Normalisation 1 Review

unnormalised => 1NF => 2NF => 3NF => BCNF

Chapter 4.1
V3.01

Copyright @ Napier University
Dr Gordon Russell
Terminology

• R (matric_no, firstname, surname, tutor_no, tutor_name)

 tutor_no -> tutor_name

 – A given tutor_no uniquely identifies (AKA functionally determines) a tutor_name.
 – Tutor_name is dependent on tutor_no
 – Tutor_no is the determinant

 – An implied determinant (underlined) is also present in R:
 • matrix_no -> firstname, surname, tutor_no, tutor_name
First Normal Form

• A relation is in 1NF if, and only if, it contains no repeating attributes or groups of attributes (must be atomic values).

• A table with repeating groups is not in 1NF
 – it is an `unnormalised table'.

• To remove repeating groups, either:
 – flatten the table and extend the key, or
 – decompose (split) the relation
Second Normal Form

- A relation is in 2NF if, and only if, it is in 1NF and every non-key attribute is fully functionally dependent on the whole key.
- Thus all non-key attributes must depend on the whole key. Another way of saying this is that there must be no partial key dependencies (PKDs).
- Problems arise only when there is a compound key

KeyPart1 + KeyPart2 => attribute1, attribute2, …
Third Normal Form

• 3NF removes virtually all the redundant data

• A relation is in 3NF if, and only if,
 – it is in 2NF and
 – there are no transitive functional dependencies

• A transitive functional dependency can only occur if there is more than one non-key field

• A non-key field must provide a fact about the key, the whole key (2NF) and nothing but the key (3NF).
Summary: 1NF

A relation is in 1NF if it contains **no repeating groups**

Remember to put the primary key from the original relation into both new relations.

\[R(a,b,(c,d)) \] becomes

\[R(a,b) \]
\[R1(a,c,d) \]
Summary: 2NF

• A relation is in 2NF if it is in 1NF and has no partial key functional dependencies

• NOTE: A relation in 1NF with a single key field must (inevitably) be in 2NF

• DECOMPOSE:
 • One relation for the attributes that are fully dependent upon the key.
 • One relation for each part of the key that has partially dependent attributes

R (a,b,c,d)
a->c becomes
R (a,b,d) and R1 (a,c)
Summary: 3NF

- A relation is in 3NF if it is in 2NF and has no transitive functional dependencies.
- **NOTE:** A relation in 2NF with only one non-key attribute **must** (inevitably) be in 3NF.
- **DECOMPOSE** To remove transitive functional dependencies, remove the attributes involved in the transitive dependency to a new relation.
3NF continued

\[R(a, b, c, d) \]
\[c \rightarrow d \text{ Becomes } \]
\[R(a, b, c) \]
\[R1(c, d) \]