
SQL – Simple Queries

Chapter 3.1

V3.01
Copyright @ Napier University

Introduction

• SQL is the Structured Query Language
• It is used to interact with the DBMS (database management system)
• SQL can

– Create Schemas in the DBMS
– Alter Schemas
– Add data
– Remove data
– Change data
– Access Data

DSL

• SQL is a Data Sub Language
• This is a combination of two languages

– DDL – Data Definition Language
– DML – Data Manipulation Language

• The main way of accessing data is using the DML
command SELECT.

• The abilities of the SELECT command forms the majority
of this material on SQL

Database Models

A data model comprises
• a data structure
• a set of integrity constraints
• operations associated with the data structure

Examples of data models include:
• hierarchic
• network
• Relational (E. F. Codd)

Relational Databases

The relational data model comprises:

• relational data structure
• relational integrity constraints
• relational algebra or equivalent (SQL)

– SQL is an ISO language based on relational
algebra – the operations

– relational algebra is a mathematical
formulation

Relational Data Structure

A relational data structure is a collection of
tables, or relations.

• A relation is a collection of rows or tuples

• A tuple is a collection of columns or
attributes

• A domain is a pool of values from which
the actual attribute values are taken.

Relational Structure cont

Attributes

Domain

Relation

Description Price
Tuples

Domain and Integrity
Constraints

• Domain Constraints
– limit the range of values of an attribute
– specify uniqueness and ‘nullness’ of an attribute
– specify a default value for an attribute when no value

is provided.
• Entity Integrity

– every tuple is uniquely identified by a unique non-null
attribute, the primary key.

• Referential Integrity
– rows in different tables are correctly related by valid

key values (‘foreign’ keys refer to primary keys).

Example Database

• In order to better understand SQL, all the example queries
make use of a simple database.

• The database is formed from 2 tables, CAR and DRIVER.
• Each car may be owned by a DRIVER.
• A DRIVER may own multiple CARs.

DRIVER CAR

DRIVER

NAME DOB

Jim Smith 11 Jan 1980

Bob Smith 23 Mar 1981

Bob Jones 3 Dec 1986

CAR

REGNO MAKE COLOUR PRICE OWNER

F611 AAA FORD RED 12000 Jim Smith

J111 BBB SKODA BLUE 11000 Jim Smith

A155 BDE MERCEDES BLUE 22000 Bob Smith

K555 GHT FIAT GREEN 6000 Bob Jones

SC04 BFE SMART BLUE 13000

• Each column holds data of a particular type
– Integer, string, decimal, blobs
– The range of values can be further constrained

• If a column in a row contains no data, it is NULL.
• Null can indicate no possible value, or unavailable data.

• All rows (tuples) must differ from each other in some way
• Cardinality is the number of rows of a table
• Arity is the number of columns of a table

cardinality

Arity

Primary Keys & Entity Integrity

• A Primary Key is a group of one or more
columns which, when taken together, is unique in
the table

• No part of a primary key can be NULL.

• In our example,
– DRIVER: the primary key is NAME
– CAR: the primary key is REGNO

• In our example this means that no two drivers can
have the same name. In the real world this would
be a problem, but this is just an example.

Referential Integrity
• Note that there is a link between CAR and DRIVER via the

 attribute OWNER.
• If there is a value in OWNER, then this value must also

appear somewhere in DRIVER (attribute NAME).
• If you change a driver’s NAME in DRIVER, you must

make sure the same change is made in OWNER of CAR.

• The DBMS enforces the rules!
• If you try to break the rules the DBMS reports the problem

as a REFERENTIAL INTEGRITY error.

SQL Basics

• Basic SQL statements include
– CREATE – a data structure
– SELECT – read one or more rows from a table
– INSERT – one of more rows into a table
– DELETE – one or more rows from a table
– UPDATE – change the column values in a row
– DROP – a data structure
– ALTER – a data structure

• In this lecture the focus is on SELECT.

DDL

DML

DML

DML

DDL

DDL

DDL

Simple SELECT
• SELECT column FROM tablename
• SELECT column1, column2, column3, …

FROM tablename1, tablename2, …
• SELECT * from tablename

e.g. SELECT * from CAR; -- gives
REGNO MAKE COLOUR PRICE OWNER

F611 AAA FORD RED 12000 Jim Smith

J111 BBB SKODA BLUE 11000 Jim Smith

A155 BDE MERCEDES BLUE 22000 Bob Smith

K555 GHT FIAT GREEN 6000 Bob Jones

SC04 BFE SMART BLUE 13000

SELECT regno from CAR;

REGNO

F611 AAA

J111 BBB

A155 BDE

K555 GHT

SC04 BFE

SELECT colour, owner from CAR;

COLOUR OWNER

RED Jim Smith

BLUE Jim Smith

BLUE Bob Smith

GREEN Bob Jones

BLUE

Formatting
• SPACES do not matter
• NEWLINES do not matter
• Good practice to put ; at the end of the query.
• CaSE (except between single quotes) does not

matter.
• The following are all valid:

SELECT REGNO FROM CAR;
SElecT regno
 From car
;
SELECT Regno
FROM Car;

Comments

• To give you the ability to make notes in queries you are
allowed to have comments.

• Comments are not executed (they are ignored)
• A comment starts with -- and ends with a newline
• They are only permitted within a query.

SELECT regno -- The registration number
FROM car -- The car storage table
;

SELECT filters

• You can have rules in your queries
• These rules are tested for each row your query produces
• If the rule is true, the row is displayed
• If the rule is false, the row is not displayed

• The rule starts with WHERE

SELECT columns

FROM table

WHERE rule

Simple Rule
• A simple rule might be to look for a car with a

colour of RED.
• The rule would be colour = 'RED'

SELECT regno FROM CAR SELECT regno
from CAR

WHERE colour = 'RED'
REGNO

F611 AAA

J111 BBB

A155 BDE

K555 GHT

SC04 BFE

REGNO

F611 AAA

Note

• Things between quotes are CASE
SENSITIVE.

• ‘RED’ is not the same as ‘Red’ or ‘red’

• Rules which mention fields can be used
whether the fields appear on the SELECT
line or not.

SELECT regno from CAR
WHERE colour = 'RED'

REGNO COLOUR

F611 AAA RED

Comparisons

• Valid comparisons include =,!=,<>,<,<=,>,>=
– Colour = ‘RED’ The colour must be red
– Colour != ‘RED’ The colour is not red
– Colour <> ‘RED’ Same result as !=
– Price > 10000 More than 10000
– Price >= 10000 More than or equal to 10000
– Price < 10000 Cheaper than 10000
– Price <=10000Cheaper or the same as 10000

• Numbers – You may say ‘10000’ or 10000 in Oracle
SQL

• “Strings” and dates must always have quotes…

DATE

• You can use all the normal comparators with dates.

SELECT name,dob SELECT name,dob from driver
from driver where DOB = ‘3 Jan 1986’

NAME DOB

Jim Smith 11 Jan 1980

Bob Smith 23 Mar 1981

Bob Jones 3 Dec 1986

NAME DOB

Bob Jones 3 Dec 1986

• The tricky part with dates is remembering that
dates get bigger as you move into the future.

• DATE1>DATE2 indicates DATE1 is in the future
after DATE2.

(i,.e. 2007 > 2006 and Mar > Jan)

SELECT name,dob from driver
WHERE DOB >= ‘1 Jan 1981’

NAME DOB

Bob Smith 23 Mar 1981

Bob Jones 3 Dec 1986

DATE Syntax

• Date must be in quotes
• Each DBMS handles dates in a slightly different way
• Dates like ‘1 Jan 2003’ work quite well.
• Oracle permits dates like ‘1-Jan-2003’

• Oracle also permits dates like ‘1-Jan-03’

– If you type this it will assume 2003.
– If you mean 1984 type 1984 not –84.

• You must always specify a day and a month. If you do
not the DBMS will report an error.

BETWEEN (is inclusive)

• When dealing with dates sometimes you want to test to
see if a field value falls between two dates.

• The easiest way to do this is with BETWEEN

• Find all drivers born between 1995 and 1999
SELECT name,dob from driver
WHERE DOB BETWEEN ‘1 Jan 1985’ AND ’31 Dec

1999’
• Between works for other things, not just dates…

SELECT regno from CAR
where price BETWEEN 5000 AND 10000;

NULL

• NULL indicates that something has no value
• It is not a value, and you cannot use normal comparison

operators.
• For instance, looking for cars without owners…

Wrong: SELECT regno from car where owner = NULL
Wrong: SELECT regno from car where owner

= ‘NULL’

• Instead there are two special operators,
– IS NULL, or
– IS NOT NULL

SELECT regno from car

WHERE OWNER is null

SELECT regno from car

WHERE OWNER is not null

REGNO

SC04 BFE

REGNO

F611 AAA

J111 BBB

A155 BDE

K555 GHT

SC04 BFE

Has no owner

LIKE

• Sometimes you want to have a rule
involving partial strings, substrings, or
wildcards

• LIKE does this, and is a slot-in replacement
for ‘=‘

• If the string contains ‘%’ or ‘_’, LIKE uses
them to support wildcards.
% - Matches zero or more characters in the

string
_ - Matches exactly 1 character in the string

Examples

• Name LIKE ‘Jim Smith’ e.g. Jim Smith
• Name LIKE ‘_im Smith’ e.g. Tim Smith
• Name LIKE ‘_ _ _ Smith’ e.g. Bob

Smith
• Name LIKE ‘% Smith’ e.g. Frank Smith
• Name LIKE ‘% S%’ e.g. Brian

Smart
• Name LIKE ‘Bob %’ e.g. Bob

Martin
• Name LIKE ‘%’ i.e. matches anyone

• LIKE is more expensive than =
• If you are not using wildcards, always use = rather than

LIKE. If you use LIKE always use %

