




Introduction

Faceted knowledge representation is a theory of knowledge repre-
sentation that tries to overcome some of the difficulties involved in
designing knowledge representation systems that are flexible enough
to be applicable to a variety of domains and users. Facets are view-
points or aspects, for example, the viewpoint of a specific user group
or a specific organizational aspect, such as whether products are ar-
ranged according to departments, manufacturing processes or user
needs. Faceted knowledge representation systems provide means for
coding knowledge according to different facets and for displaying
knowledge in a flexible, user-adaptable manner. There are many
structures in conventional knowledge representation formalisms that
facilitate flexibility and are similar to facets. Examples are classes
in object-oriented design, interfaces in languages such as Java, enti-
ties and views in relational databases, situations in situation theory
(Devlin & Rosenberg, 1996), contexts and scales in formal concept
analysis (Ganter & Wille, 1999) and contexts in AI ontologies and
in conceptual graphs (Sowa, 1984). Furthermore, a new extension of
object-oriented programming called ”aspect-oriented programming”
(Kiczales et al., 1997) is essentially object-oriented programming with
facets. Faceted knowledge representation identifies and formalizes the
shared features that all these classes, interfaces, views, situations and
contexts have in the definition of “facets”. Such a meta-formalism
can facilitate the combination of different knowledge representation
systems and provide for translations among them.

Facets can be graphically displayed in visualizations, which are
interpretations that map conceptual entities onto elements of graphi-
cal representations. Without visualizations, facets may be difficult to
manage by human users. Faceted knowledge representation does not
develop new tools for visualizing but instead facilitates the combi-
nation of conventional visualization tools by defining interpretations
that translate between different representations. Combining visual-
ization tools is not a new idea. For example, in the management
literature, Kingston and Macintosh’s (2000) “multi-perspective mod-
elling” of organizational processes aims at combining different visu-
alization and analysis methods. Faceted knowledge representation
intends to provide the theoretical foundation for that.

In order to formalize facets at an abstract level, the vocabulary
used to describe them must be general enough to be applicable to such
similar notions as context, situation, class and perhaps even fractal.
Furthermore, the vocabulary should be concise. The three primary
notions are unit, relation and facet. Other knowledge representation
systems sometimes use different notions for entities that could poten-
tially be formalized in one notion, such as Lenat’s (1998) “context”
and “dimension” and Devlin and Rosenberg’s (1996) “situation” and
“device”. While such distinctions may be useful for providing a rich
vocabulary in applications, concerning facets the focus is on identi-

1



fying the common features so that facets are applicable to any kind
of knowledge representation.

Another basic notion of faceted knowledge representation is the
distinction between extensional, set-oriented and intensional, relation-
oriented or rule-based representations which can be deliberately sepa-
rated or combined. There are numerous examples demonstrating the
usefulness of combining extensional and intensional representations.
For example, logical arguments are often used to intensionally prove a
statement, whereas a counter example is often sufficient to extension-
ally reject a statement. It is in many cases much more difficult to do
the opposite: prove statements based on examples and disprove state-
ments based on arguments. Another example is traditional database
retrieval, which presents results extensionally as sets. In the case of
an empty result set, users are given no clues as to what they need
to change to retrieve elements that are based on intensional features
closely related to the request, i.e., how to find the ”almost hits”. In
the case of a very large result set, users are given no indication as to
how the query can be narrowed down based on intensional features
of the query and the database. Thus traditional database retrieval
presents results extensionally without utilizing intensional features.
A goal of faceted knowledge representation is to improve database
retrieval by representing extensional elements of a result set within
their intensional relational structures and within a context of related
elements.

The notion of ”facets” for knowledge representation was first men-
tioned by Ranganathan (1962) in the field of library classification
schemes. Facets originate from Ranganathan’s insight that it is usu-
ally not useful or feasible to design a classification scheme as a single
tree-like hierarchy. This is especially true for universal classification
systems in library science which should be applicable to any possible
usage or user need. Instead he proposed to group and order classes
according to facets. For example, consider classes, such as ”Ameri-
can Poetry of the 19th Century”. Does this class first belong under
”America” and then ”Poetry” and ”19th Century”, or first under
the temporal class, then the geographical class and last the literary
type class? In a faceted classification system this decision does not
have to be made. The term would be classed under ”America” in the
geographical facet, under ”19th century” in the temporal facet, and
under ”poetry” in the literary type facet. The facets would then be
postcombined at the time of retrieval. The notion of “facets” in this
paper is related to Ranganathan’s but is broader.

Since it is difficult or impossible to implement a faceted classifi-
cation scheme without software tools for creation, modification and
display of the scheme, faceted classification or the notion of “facets”
in general was not very well know outside of the field of library science
for the last 50 years. The advent of software tools such as databases
for flexible management of large data sets and graphical display soft-
ware has opened numerous possibilities for the use of facets. This

2



paper presents an attempt at defining a comprehensive formal theory
of facets in knowledge representation systems that identifies facets as
a unique principle or paradigm of knowledge structures. But while
some major features of facets are described in this paper, this is still
work in progress.

Uniformities, facets and interpretations

Uniformities are conceptual entities. Examples of uniformities are
units, relations, and facets. Uniformities can usually be represented
by a name, such as “prime number”, by an extensional or set-based
representation, such as {1, 2, 3, 5, 7, 11 . . .} or by an intensional or
rule-based representation, such as “only divisible by 1 or itself”. Both
extensional and intensional representation assume a context of posi-
tive integers because otherwise the dots in the extensional representa-
tion would be meaningless and in the intensional representation the
concept of “division” would be ambiguous. Other representations,
such as a representation by a process or algorithm, or combinations
of different kinds of representations are also possible.

Units are atomic uniformities or tuples of atomic uniformities.
They are atomic because their properties are defined in terms of their
relations to other uniformities but not in terms of their parts or in-
ternal features. Units can only be represented by names but there
can be synonymous names for a single unit. Units can be elements
of sets. Extensional representations usually consist of sets of units.

Relations are sequences of 0’s and 1’s (unary relations) or matrices
of 0’s and 1’s (binary relations). Intensional representations contain
primarily relations but sometimes also some units. Conceptual rela-
tions, such as “has part”, “owns” or “eats” are not relations in this
paper. Instead they are modeled as facets because they contain units
and relations.

The sets in the following definition are not meant to be universal
in that they would describe all actual or possible uniformities that hu-
mans could think of. Instead they are finite sets selected with respect
to a context. That is not a limitation but a feature because contexts
and facets can be changed, expanded, updated, deleted and combined
in many ways. It is one goal of faceted knowledge representation to
modularize knowledge representation systems.

Definition 1:

1.1 U denotes a set of uniformities.
1.2 N (⊆ U) denotes a set of units, R (⊆ U) a set of relations.
1.3 Ntf (⊆ N ) denotes a set of two units: ”true” and ”false”.
1.4 Ru (⊆ R) denotes a set of unary relations (sequences of 0’s and
1’s); Rb (⊆ R) denotes a set of binary relations (binary matrices,
arrays of 0’s and 1’s).

The following definition contains the main operators for units and
relations. The operators are listed here without details and logical

3



dependency considerations. The set operators are the normal ones.
For further details on the relational operators see Pratt (1992). Since
Ru corresponds to sets, the operations on Ru also correspond to set
operations. Table 1 contains a summary.

Definition 2:

2.1 For n1, n2 ∈ N : n1 = n2 :⇐⇒ n1 and n2 are synonymous in
context.
2.2 ∈ and × (Cartesian product) denote the usual set operations.
2.3 For a positive integer i, a linearly ordered set N ⊆ N and n ∈ N :
n ∼ i :⇐⇒ n is at the ith position.
2.4 For r ∈ Ru, s ∈ Rb, positive integers i, j:
ir :⇐⇒ ith position in r is 1; isj :⇐⇒ (i, j)th position in s is 1.
2.5 For r ∈ Ru, s ∈ Rb, positive integers i, j:
¬(ir) :⇐⇒ ith position in r is 0;
¬(isj) :⇐⇒ (i, j)th position in s is 0.
2.6 Other operations for sets and relations are:
Operators of aggregation: ∪, ∩, c

Operators of composition (only for Rb): ◦, •, d

Operators of aggregation and composition (only for Rb):
+, ⋆

Comparison operators: =, ⊂,⊆
2.7 Special notations: ∅ represents the empty set; 0 (∈ R) contains
only 0’s; 1 (∈ R) contains only 1’s; 1′ (∈ Rb) has 1’s on the diagonal,
0’s otherwise; 0′ (∈ Rb) has 0’s on the diagonal, 1’s otherwise.

name mapping definitions
∪ union ∪ : R×R → R
c negation (complement) c : R → R
0 0 ∈ R
∩ intersection ∩ : R×R → R r ∩ s := (rc ∪ sc)c

1 1 ∈ R 1 := 0c

◦ product ◦ : Rb ×Rb → Rb
d inverse (dual) d : Rb → Rb

1′ 1′ ∈ Rb

• de Morgan compl. of ◦ • : Rb ×Rb → Rb r • s := (rc ◦ sc)c

0′ 0′ ∈ Rb 0′ := 1′c
+ transitive closure + : Rb → Rb r+ := r ◦ r ∪ r ◦ r ◦ r ∪ . . .
⋆ refl. trans. closure ⋆ : Rb → Rb r⋆ := 1′ ∪ r+

⊆ ⊆: R×R → Ntf r ⊆ s :⇔ r ∩ s = r

= equality =: R×R → Ntf r = s :⇔ r ⊆ s and s ⊆ r

⊂ containment ⊂: R×R → Ntf r ⊂ s :⇔ r ⊆ s and not r = s

Table 1

A facet is a uniformity that provides a viewpoint or aspect of
other uniformities. Facets provide context for sets and relations and
their combination. All uniformities involved in a single facet are dis-
ambiguated which means that within a facet they are unique and
have exactly one meaning. If several different facets are to be com-
bined, some of their uniformities may need to be renamed to achieve

4



disambiguation. Formally, facets combine relations, units and other
facets. The simplest facets are basic facets (as formalized in the fol-
lowing definition) that consist of one relation and its associated sets
of units.

Definition 3:

3.1 A basic facet is a uniformity consisting of a relation and a set/sets
of units.
3.2 FB (⊂ U) denotes a set of basic facets.
3.3 FBu (⊂ FB) denotes a set of unary basic facets of the form f =
(N ; r).
3.4 FBb (⊂ FB) denotes a set of binary basic facets of the form
f = (N1, N2; s).
The following conditions must be fulfilled:
3.5 All uniformities within a facet are disambiguated.
3.6 The number of elements in N and N1, N2 correspond to the
matrix dimensions of r and s, respectively.
3.7 N , N1 and N2 are linearly ordered and for n ∈ N , n1 ∈ N1,
n2 ∈ N2, positive integers i, i1, i2:
nr :⇐⇒ n ∼ i and ir; n1rn2 :⇐⇒ n1 ∼ i1 and n2 ∼ i2 and i1ri2.
3.8 The extension ext(f) of a basic facet f ∈ FBu consists of N and
the set N := {n | n ∈ N,nr}. The extension ext(f) of a basic facet
f ∈ FBb consists of N1 and N2 and the set N1 × N2 := {(n1, n2) |
n1 ∈ N1, n2 ∈ N2, n1rn2}.
3.9 The intension int(f) of a basic facet is the set of finite (first order)
logic formulas without free variables that are true for the facet.

An example of a formula without free variables is ”∀n∈N : nrn”,
which expresses the intensional property “reflexivity” of r within the
context of a facet f = (N,N ; r). Because of n ∈ N ⇐⇒ nr and
n ∈ N\N ⇐⇒ ¬(nr) for f = (N ; r) and (n1, n2) ∈ N1 × N2 ⇐⇒
n1rn2 and (n1, n2) ∈ N\N1 × N2 ⇐⇒ ¬(n1rn2) for f = (N1, N2; r),
it follows that with the exception of the order of rows and columns of
the relation and of elements in the linearly ordered sets, a basic facet
can be re-constructed both from its extension and its intension. Two
basic facets are thus equal if they have equal extensions or, which is
an equivalent condition, equal intensions.

More complex facets can be built by applying set and relational
operators to basic facets. These operations can be described exten-
sionally or intensionally. Table 2 shows examples. All facet construc-
tions in the table require that the original facets share some sets.
Each example is assumed in a context that assures that all sets are
linearly ordered in a corresponding manner. For example in 1a), the
common elements of the sets must be at the same positions. Further-
more, rows and columns with 0’s may need to be added to r1 and r2

so that they are of equal dimension.

5



1a) intensional representation: n(r1 ∪ r2) :⇔ nr1 or nr2

b) extensional representation: n ∈ (N1 ∪ N2) :⇔ n ∈ N1 or n ∈ N2

c) facet: f1 = (N1; r1), f2 = (N2; r2) yield f3 = (N1 ∪ N2; r1 ∪ r2)

2a) intensional representation: n1r
cn2 :⇔ ¬(n1rn2)

b) extensional representation:

(n1, n2) ∈ N\N1 × N2 :⇔ (n1, n2) ∈ N\N1 × N2

c) facet: f1 = (N1, N2; r) yields f2 = (N1, N2; r
c)

3a) intensional representation: n1(r1 ◦ r2)n2 :⇔ ∃n3
: n1r1n3 and n3r2n2

b) extensional representation: (n1, n2) ∈ N1 ◦ N2 :⇔
∃n3∈N3

: (n1, n3) ∈ N1 × N3 and (n3, n2) ∈ N3 × N2

c) facet: f1 = (N1, N3; r1), f2 = (N3, N2; r2) yield f3 = (N1, N2; r1 ◦ r2)

4a) intensional representation: n2r
dn1 :⇔ n1rn2

b) extensional representation: (n2, n1) ∈ N2 × N1 :⇔ (n1, n2) ∈ N1 × N2

c) facet: f1 = (N1, N2; r) yields f = (N2, N1, r
d)

Table 2

General facets are formalized in the following definition. Obvi-
ously, some restrictions are required to ensure that the process of
constructing facets from other facets does not result in contradic-
tory constructions. For example, it should be prohibited to construct
facet f1 from f2 and at the same time construct f2 from f1. The list
of conditions is not complete. Only some necessary conditions are
provided.

Definition 4:

4.1 A facet is a relational structure consisting of uniformities and/or
sets of uniformities and rules that constrain the uniformities and that
are formed using uniformities and operators, such as but not limited
to the operators in definition 2.
4.2 The set of facets is denoted by F (⊆ U).
4.3 A facet f1 that is used for constructing another facet f2 is called
a subfacet of f2, denoted by f1 ❁ f2.
The following necessary conditions must be fulfilled:
4.4 ❁ is acyclic and transitive.
4.5 Facets that do not contain subfacets are basic facets.
4.6 Only units, sets of units and relations of a facet or its subfacets
can be used in rules.
4.7 For every relation in a facet there is at least one basic facet that
contains that relation.

Conditions 4.4 and 4.5 ensure that facets form a hierarchy. Basic
facets are the building blocks of facets. Condition 4.6 can be further
refined, for example by restricting rules to first or second order logic.
Rules can be distinguished as to whether they apply to relations
and sets of units or to units and specific elements of relations. This
distinction is similar to class methods and instance methods in object-
oriented programming. The extension of a facet refers to the units
that are described by the facet. Essentially the extension consists
of a set of sets Ni and Ni. The intension refers to first order logic

6



formulas without free variables that are true for the facet. Two facets
are equal if they have the same extension or, and this is an equivalent
condition, the same intension.

In traditional semantics, an interpretation is defined as a mapping
from concepts or conceptual relations onto sets of units or tuples of
units of a domain. In other words, traditionally an interpretation
maps from a theory onto a model. In faceted knowledge represen-
tation that would correspond to a mapping from intensional repre-
sentations onto extensional representations. But interpretations can
also map in the opposite direction or between two extensional or two
intensional representations. Interpretations are useful tools for check-
ing consistency and applicability of a facet because translating from
one kind of representation, such as an intensional representation, to
another kind of representation, such as an extensional representation
can make features apparent that are otherwise implicit. In the case
of interpretations between extension and intension of a single facet,
no information is lost or added. On the other hand, interpretations
between different facets can produce a loss of information. In that
sense interpretations are similar to homomorphisms in mathematics
or Barwise & Seligman’s (1997) infomorphisms.

Definition 5:

5.1 An interpretation ι is a mapping between uniformities or sets of
uniformities.
5.2 The set of interpretations is denoted by I.
5.3 An interpretation ι from D to C is denoted by ι : D → C.

Table 3 shows some standard interpretations. The interpreta-
tion ιatm maps each uniformity or set of uniformities onto a unit.
An example is an entity relationship diagram in which entities (i.e.,
database tables or facets) and relations (facets) are represented as
nodes (units). The interpretation ιden corresponds to the notion of
an interpretation in description logic. A subset Nden of N is identified
as a set of denotata, i.e. units that correspond to objects in an ap-
plication. Each uniformity of the formal description is mapped onto
a set of elements of the application. In other words the formal de-
scription is assigned a meaning in the context of an application. The
interpretations ι+

den
and ι⋆den can be used to compute the transitive or

transitive and reflexive closure of a relation. The last interpretation
in the list, ιN1N2

, enables the changing of the dimension of a relation.
The relation can be restricted to a subset or extended to a superset
by inserting 0’s among the new elements.

7



Name and domains explanation or definition
ιatm : U ∪ PU → N interprets uniformity or set of unif. as a unit
ιden : U → PN den interprets uniformity as a set of denotata

ι+ext : FBb → PN the extension of a basic facet after replacing r with r+

ι⋆ext : FBb → PN the extension of a basic facet after replacing r with r⋆

ιN3N4
: FBb → FBb with f1 = (N1, N2; r1)

a facet f2 = (N3, N4; r2) is created with
∀n3∈N3,n4∈N4

: n3r2n4 :⇔ n3 ∈ N1, n4 ∈ N2, n1r1n2

Table 3

Operators for facets, such as ”facet union”, should probably not
be defined independently of applications because there are many pos-
sibilities. For example, with f1 = (N11, N12; r1) and f2 = (N21, N22; r2)
a ”union” could be defined as f1∪

1f2 := (N31, N32; r3; f1, f2; r3 = r1∪
r2) if N31 = N21 = N11, N32 = N22 = N12. If the sets are not identi-
cal, the union could be f1∪

2f2 := ιN1∩N3N2∩N4
(f1)∪ιN1∩N3N2∩N4

(f2)
or f1 ∪

3 f2 := ιN1∪N3N2∪N4
(f1) ∪ ιN1∪N3N2∪N4

(f2). But f3 := (f1, f2)
is also a candidate for facet union. Since it may be difficult to list all
possible or sensible operators for facets, it may be useful to at least
discuss classes of such operators:

Facet aggregation: a facet is constructed by using only interpre-
tations and operators of aggregation. The four suggested candidates
for a union of facets are examples of facet aggregation.

Facet composition: a facet is constructed by using interpretations
and operators of composition. This usually means that one facet is
considered under the application or aspect of another facet. Selection
and filtering are examples of facet composition. Selection can be
represented by relational composition with a column vector. Filtering
can be represented as relational composition with a matrix that can
have 1’s only on the diagonal.

Facet abstraction is based on the use of interpretations that group
uniformities into sets and then transform the original relations to
relations among those sets. Facet abstraction could also be called
facet homomorphism. Classification is a form of facet abstraction.

Facet expansion is the counterpart to facet abstraction. Diverse
products (Cartesian product, tensor product) for facets are types of
facet expansion.

One purpose of interpretations is to analyze the formalized knowl-
edge in a system by shifting it from one representation to another
and thereby exploring it under different viewpoints. One advantage
is that tools, especially tools for visualization from different existing
knowledge representation formalisms can be utilized to graphically
represent implicit and explicit knowledge structures. Interpretations
that map units, relations or facets onto a graphical representation are
called visualizations and are defined as follows.

Definition 6:

A visualization of a facet is an interpretation that maps uniformities
of the facet onto elements of a graphical representation, such as nodes
and lines of a graph.

8



Depending on the application different graphical representations
are appropriate: basic facets f = (N1, N2; r) can be interpreted as
a bipartite graph if N1 ∩ N2 = {} or as an adjacency matrix of a
graph if N1 = N2. A visualization can then graphically represent
the graphs. Basic facets f = (N1, N2; r) can also be interpreted as
a formal context in the sense of formal concept analysis. In that
case they are visualized as line diagram of concept lattices (Ganter
& Wille, 1999) and the notion of facets is then similar to the notion
of multicontexts (Wille, 1996). If ι+ext is applied or the relation is
transitive, transitive lines can be omitted in the graphical display. If
ι⋆ext is applied or the relation is reflexive and transitive, transitive and
reflexive lines can be omitted in the display. Several displays can be
generated for the same facet.

An application: a faceted thesaurus

A faceted thesaurus is a faceted, hierarchical structured set of terms
and/or concepts that can be used in information retrieval. The the-
saurus provides a controlled vocabulary for assigning terms to docu-
ments. The faceted hierarchical display ensures maximum efficiency
and control in the design and use of the thesaurus. For further de-
tails on faceted thesauri see for example Soergel (1985). The no-
tion of ”facet” in faceted thesaurus refers to Ranganathan’s use of
”facet”. The modeling in this paper demonstrates that traditional
facets are facets in terms of faceted knowledge representation. The
modeling can directly be translated into an object-oriented implemen-
tation. Such an implementation can provide a graphical interface for
thesaurus construction (in contrast to many currently existing the-
saurus tools that are text-based). The faceted modeling ensures that
the thesaurus can be designed in a modular fashion and that the
modules (facets) are not circular and do not duplicate terms or con-
cepts. The modular approach eases future updates and maintenance
of the system. Last but not least, a graphical interface based on the
faceted structure can provide user-friendly access to a database with
documents that users are interested in searching and browsing.

A thesaurus consists of a generic (IS-A) relation among terms (or
concepts), a synonymy relation among terms and possibly other re-
lations, such as a part/whole relation. In this paper only the generic
relation is formalized. Details on the other relations are left for future
publications. A less technical description of this modeling with fur-
ther examples can be found in Priss & Jacob (1999). The underlying
idea of this modeling is that a relatively small fixed set of terms is
used to generate a flexible, possibly large set of concepts. The larger
set of concepts provides the vocabulary that is assigned to documents
as descriptors but only the smaller set of terms needs to be stored in
a database. The main building blocks of the thesaurus are base-line
facets. They are defined with the help of an interpretation.

9



Definition 7:

ιl : Fg
Bb → FBb is an interpretation that maps every facet f1 in Fg

Bb,
the set of basic facets for which N1 = N2 and r1 is an order relation,
onto a basic facet f2 whose relation r2 forms a lattice that is the
Dedekind closure of the ordered set in f1.

Definition 8:

A base-line facet is a facet of the following form:

f = (C, T, {tt}; rg, rc; (T, T, rg), (C,C, rc);

(C,C, rc) = ιl((T, T, rg)),

tt ∈ T,∀t∈T : trgtt,

1′ ≤ rg, rg ∩ rd
g ≤ 1′, r+

g = rg)

Definition 8 states that a base-line facet contains two basic facets:
(T, T, rg), a set of terms with a generic relation, and (C,C, rc), a set
of concepts that form a (concept) lattice. The set of terms has one
head term tt that is more general than any other term. The conditions
relating to rg state that the relation is reflexive, antisymmetric and
transitive. Furthermore the concept lattice is the Dedekind closure
of the ordered set of terms.

For the construction of higher-level facets, two operators are de-
fined. The notions of term aggregation and term composition are
in analogy to De Morgan’s notions of aggregation and composition
(compare Priss & Jacob (1999)).

Definition 9:

Let c(tt) denote the concept that corresponds to the head term and
1t the matrix that has 1’s in the column that corresponds to the
head term and 0’s otherwise. Let ι×N3N4

: FBb → FBb an interpreta-
tion that maps a facet f1 = (N1, N2; r1) onto a facet f2 = (N3, N4; r2)
where N3 is a direct product of N1 and other sets, N4 is a direct prod-
uct of N2 and other sets and (. . . , n1, . . .)r2(. . . , n2, . . .) :⇔ n1r1n2.
For fi := (Ci, Ti, {tti}; rgi, rci; . . .); 1 ≤ i ≤ n the following two meth-
ods of facet construction are defined:

Facet construction by term aggregation:

⊕(f1, . . . , fn) = (C, T, {tt}; rg, rl; f1, . . . , fn;

T := (
⋃

1≤i≤n

Ti) ∪ tt,

C := (
⋃

1≤i≤n

Ci) ∪ c(tt),

rg := (
⋃

1≤i≤n

ιTT (rgi)) ∪ 1t,

rl := (
⋃

1≤i≤n

ιCC(rli)) ∪ c(1t))

Facet construction by term composition:

⊙(f1, . . . , fn) = (C, T, {tt}; rg, rl; f1, . . . , fn;

10



T := (
⋃

1≤i≤n

Ti) ∪ tt,

C := (
⊗

1≤i≤n

Ci) × c(tt),

rg := (
⋃

1≤i≤n

ιTT (rgi)) ∪ 1t,

rl := (
⋂

1≤i≤n

ι×CC(rli)) ∪ c(1t))

In facet construction by term aggregation the union of terms (or
concepts) is formed. A new head term (concept) is added so that
every facet has a unique head term. An example, are terms such as
”cat”, ”dog”, ”rat” that can be aggregated in a facet ”mammal”. In
facet construction by term composition the union of terms is formed
and the direct product of concepts. An example, are facets, such as
”mammal”, ”color of fur”, ”size”, because the resulting concepts are
composed of the terms from each facet, such as ”large white cat”,
”small grey rat”, and so on. Concerning the example mentioned
in the introduction: a literary type facet, a geographical facet and
a temporal facet can each be constructed by term aggregation and
then be combined by term composition. This process can be applied
recursively and complicated structures can result. For example, only
a subfacet of ”mammal” might be composed with a facet ”typical
pet” resulting in term composition inside of term aggregation inside of
term composition. The following definition ensures that in a faceted
thesaurus, facets are not duplicated and that terms are unique.

Definition 10:

A faceted thesaurus is a facet created by recursive use of term aggrega-
tion and term composition with the conditions that the subfacet/facet
relation forms an ordered set and that for each term there is exactly
one minimal facet so that the term is an element of that facet.

Conclusion

Faceted knowledge representation is an attempt at providing a com-
mon formal framework for different types of knowledge representation
systems and enhancing them with the notion of facets. Using faceted
knowledge representation existing knowledge representation systems
can be combined and compared. New aspects or viewpoints can be
added. The example of a faceted thesaurus demonstrates the applica-
bility of faceted knowledge representation to the construction of term
and concept hierarchies, which is sketched in this paper. A previous
publication (Priss & Jacob, 1999) contains further details and exam-
ples of faceted thesauri. A future publication will demonstrate its
usefulness for information retrieval by expanding the term and con-
cept hierarchy with facets for document descriptors and query terms
resulting in a graphical representation of queries. Other applications
of faceted knowledge representation are visualizations of SQL-based

11



database queries and graphical interfaces for knowledge management
and data mining. Future publications will explore these.

References

[Barwise, Jon; Seligman, Jerry (1997)] Information Flow. The Logic

of Distributed Systems. Cambridge University Press.

[Devlin, Keith; Rosenberg, Duska (1996)] Language at Work. Ana-

lyzing Communication Breakdown in the Workplace to Inform

Systems Design. CSLI Lecture Notes, CSLI Publications, Stan-
ford.

[Ganter, Bernhard; Wille, Rudolf (1999)] Formal Concept Analysis:

Mathematical Foundations. Springer Verlag, Berlin-Heidelberg.

[Kiczales et al.] Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda,
C.; Videira Lopes, C.; Loingtier, J.; Irwin, J. (1997). Aspect-

Oriented Programming. In: Proc. of the European Conf. on
Object-Oriented Programming, Finland, Springer, LNCS 1241.

[Kingston, John; Macintosh, Ann (2000)] Knowledge

management through multi-perspective modelling: representing

and distributing organizational memory. In: Knowledge Based
Systems Journal, Special Issue.

[Lenat, Doug (1998)] The Dimensions of Context Space. Cycorp.
Available on-line at
http://www.cyc.com/publications.html.

[Pratt, Vaughan (1992)] Origins of the calculus of binary relations.
In: Proc. 7th Annual IEEE Symp. on Logic in Computer Science,
Santa Cruz, CA, p 248-254.

[Priss, Uta; Jacob, Elin (1999)] Utilizing Faceted Structures for In-

formation Systems Design. Proceedings of the 62st Annual Meet-
ing of ASIS, 1999, p. 203-212.

[Ranganathan, S. R. (1962)] Elements of library classification. Asia
Publishing House, Bombay, p 45-70.

[Soergel, Dagobert (1985)] Organizing information. San Diego, CA,
Academic Press.

[Sowa, John (1984).] Conceptual Structures: Information Processing

in Mind and Machine. Addison-Wesley.

[Wille, Rudolf (1996)] Conceptual structures of multicontexts. In:
Eklund; Ellis; Mann (eds.). Conceptual structures: represen-
tation as interlingua. Springer Verlag, Berlin-Heidelberg-New
York, p 23-39.

12


