
Modelling Conceptual Schemata
with Formal Concept Analysis

Uta Priss

Ostfalia University, Wolfenbüttel, Germany

Abstract. This paper discusses how to construct conceptual schemata (which are
meant to provide conceptual information in a manner close to natural language,
easy to memorise and mentally parse) from concept lattices which tend to present
a more computational view of conceptual information. Different methods for con-
structing schemata from concept lattices (such as OR-definitions for reducing the
number of attributes and implications of a concept lattice) are considered.

1 Introduction

As the name states, Formal Concept Analysis (FCA) provides a means for analysing
concepts. While there are many applications for FCA, it is often easier to employ FCA
for computational problems than to actually analyse concepts in a manner similar to
how natural language is processed by humans. For the purpose of structuring and de-
veloping teaching materials it would be desirable if FCA could serve as a means for
representing concepts in a manner that is close to how students learn domain knowl-
edge. A representation would be desirable that is similar to relations amongst natural
language words, for example hyponyms such as “poodle” and “dog”. Lattices that are
automatically generated from natural language databases, however, such as WordNet
or Roget’s Thesaurus tend to be more computational because their relations are not
sufficiently precisely defined (Priss & Old 2010).

In this paper, we are introducing an approach for shifting between word-based nat-
ural language representations and more formal representations with FCA. For that pur-
pose we are distinguishing (conceptual) schemata which utilise natural language words
from (conceptual) classes which contain a set of formal contexts. Investigating the con-
nections between schemata and classes is a semiotic task because it considers a rela-
tionship between words as representations of signs and concepts as meanings of signs.
It is of interest to determine how well the information of a class is retained in a schema,
how efficiently it is represented and how well a schema covers a class. The semiotic
perspective and the relationship to educational research have been discussed elsewhere
(Priss 2021a and 2021b) and are not further elaborated in this paper.

The notion of “schema” is influenced by Lakoff’s (1987) “image schema”. But the
focus of schemata in this paper is on verbal description, not on images. The words
or phrases that are defined by a schema and relate one schema to other schemata are
called head representamens in this paper in analogy to the headwords of dictionary
entries which are also called catchwords, keywords, subject headings, index terms or

descriptors in other disciplines. From a semiotic view, head representamens are repre-
sentamens of signs (Priss 2017). From a computational view, head representamens are
just strings that are elements of a set. Head representamens are to be distinguished from
other representamens which have an auxiliary function.

Head representamens can serve as building blocks for constructing compound rep-
resentamens using the operations AND, OR and NOT. For example, head represen-
tamens for poodles might be “poodle” and “miniature poodle” whereas a compound
representamen might be “poodle AND cute”. Such operations are syntactically defined
in schemata and semantically defined in classes with interpretations mapping schemata
into classes1. The operations AND and OR for head representamens are similar but
not identical to natural language “and” and ”or” because, in natural language, “and”
is sometimes used for an intersection (such as “dog and cute”), sometimes for a union
(such as “dogs and cats”) and “or” can be exclusive or inclusive. An interpretation
should map an AND-operation amongst head representamens into a meet of concepts
in a class, an OR-operation into a join of concepts or a construction involving a union
of extensions and a NOT-operation into an extensional set difference.

The basics of FCA can be found in the textbook by Ganter & Wille (1999) and
are not repeated in this paper. But it should be mentioned that a concept (a′, a′′) is
called an attribute concept of a and a concept (o′′, o′) an object concept. The ordering
amongst object concepts is called object order. Concepts that are not object concepts
are called supplemental concepts in this paper. The extension of a supplemental concept
equals the union of the extensions of its proper subconcepts. In this paper supplemental
concepts are drawn as empty nodes in the Hasse diagrams. Each supplemental concept
corresponds to a clause because for such a concept c with extension ext(c) and inten-
sion int(c) and the condition ∀oi ∈ ext(c) : ∃ci < c : oi ∈ ext(ci) it follows that∧
(ai ∈ int(c))⇒

∨
(ai | ∃ci : ci < c, ai ∈ int(ci), ai 6∈ int(c)) is a clause. It is par-

ticularly interesting to consider whether some concepts always have to be supplemental
with respect to background knowledge even if more objects are added to a context. An
example for this feature is provided in the next section.

Some aspects presented in Section 2 which discusses a certain type of reduction of
concept lattices have already been covered elsewhere, for example, by Ganter & Obied-
kov (2016). Ganter (2019) discusses how to render an implication basis of a formal
context more human readable by changing and grouping some of the implications and
Lopez-Rodriguez et al. (2021) provide a means for determining core implications from
a basis. In this paper, the focus is on reducing implications combined with representing
some of the information by other means (as subconcept hierarchies or prototypical ex-
amples) if that renders the information more human readable. OR-reductions are also
relevant for reducing a concept lattice to its AOC-poset (Osswald & Petersen, 2002)
which consists only of the attribute and object concepts and possibly for feature models
of Product Line Representations (Carbonnel et al. 2016).

The definitions of conceptual schemata, classes and interpretations in Section 3 are
similar to a standard modelling with formal semantics, for example, Prediger’s (1998)
K-interpretations which map ordered sets of concept and relation names into power

1 Contrary to standard formal semantics where interpretations map strings into sets, in this paper
interpretations map head representamens into concepts.

context families. The aim of Prediger’s work and others who extended it was to establish
a connection between FCA and Conceptual Graphs and focused on logical properties.
The focus of this paper is on the relationship between representamens and concepts in
a more closed world setting. Most established FCA exploration and reduction methods
tend to focus on reducing the lower parts of a lattice whereas in this paper mainly
supplemental concepts in the upper part of a concept lattice are reduced. Thus, this
paper draws on existing research but from a somewhat different perspective.

2 OR-Reduction

This section uses an example of a formal context and lattice from Ganter & Wille (1999)
consisting of seven prototypical types of triangles and their defining properties (Fig. 1,
left). In this example, the supplemental concepts (represented as empty nodes) must
always be supplemental because every triangle must have exactly one of the attributes
“acute”, “obtuse” or “right” and either be equilateral or not or isosceles or not. Thus
according to background knowledge about triangles, the object concepts describe actual
examples of triangles whereas the extensions of the supplemental concepts must always
be unions of the extensions of their subconcepts even if more triangles are added to the
context. The lattice displays subconcept relationships for the types of triangles. If a
student wants to learn about triangles, their types and their definitions, it would not be
efficient to memorise all of the concepts of the lattice on the left side of Fig. 1. because
it displays more a computational view than a natural language view.

obtuse

acute

equilateral

obtuse

acute, isoseceles

right

equilateral

acute

oblique isosceles not equilateral

right

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

Obj 6

Obj 7

obtuse, isosceles

right, isosceles

Implications: equilateral −> isosceles acute
acute obtuse −> ⊥

acute right −> ⊥

obtuse right −> ⊥obtuse right

⊥

⊥

⊥

(equilateral −> isosceles AND acute)

obtuseacute

equilateral

isosceles right

obtuseacute right

equilateral

isosceles

oblique := acute OR obtuse
not_equilateral := NOT equilateral

acute obtuse
acute rightFig. 1. A lattice of triangles (cf. Ganter & Wille (1999)) and its reduced form

The right side of Fig. 2 shows a reduced version of the lattice on the left. The at-
tributes “oblique” and “not equilateral” have been removed because oblique represents
“acute OR obtuse” and “not equilateral” is the negation of “equilateral”. Normally in
FCA reducing means to remove all attributes and objects from a context which are
at attribute or object reducible concepts. Another form of reduction is to calculate an
AOC-poset which only keeps object and attribute concepts and their ordering (Osswald
& Petersen 2002). AOC-posets are compact and can be algorithmically produced (Berry
et al. 2014). A lattice can be reconstructed from its AOC-poset if a clause is added for
each concept that is neither an attribute nor an object concept. A disadvantage of AOC-
posets is that conjunctions of attributes and therefore implications need not correspond

to a single node and cannot easily be read from Hasse diagrams. This disadvantage
is avoided by the reduction methods in this paper. Other means for reducing the size
of concept lattices discussed in the literature tend to rely on statistical or probabilistic
methods which cannot easily be reversed (cf. Priss & Old (2011) for an overview).

In this paper, only reducing attributes is of interest. Reducing attributes in the stan-
dard manner (called AND-reduction in this paper) changes the labelling of a concept
lattice but not its structure. Removing attributes that are OR combinations (called OR-
reduction in this paper) or NOT combinations (NOT-reduction) may change the concept
lattice itself and reduce its size as demonstrated in Fig. 1. All of the following defini-
tions focus on attributes and assume that the contexts are finite and clarified (or purified)
which means that for any two attributes a 6= b =⇒ a′ 6= b′.

Definition 1. An attribute a of a formal context (O,A, J) is called OR-reducible if a
set A? := {a1, ..., an} ⊆ A exists with a′ = a′1 ∪ ... ∪ a′n and ai ∈ A? ⇐⇒ a′i ⊂ a′

and ¬∃b ∈ A : a′i ⊂ b′ ⊂ a′.

Definition 2. For a formal context (O,A, J): For an OR-reducible attribute a, its OR-
definition is provided by a := a1 OR ... OR an for ai ∈ A?. An attribute a with
∃{a1, ..., an} ⊆ A : a′ = a′1 ∩ ... ∩ a′n is called (AND-)reducible with an AND-
definition provided by a := a1 AND ... AND an. An attribute a with ∃b ∈ A : a′ = O\b′
is called NOT-reducible with its NOT-definition provided by a := NOT b.

Lemma 1. If a is OR-reducible, then its set A? := {a1, ..., an} for its representation as
a1 OR ... OR an is uniquely determined. If a is NOT-reducible then its NOT-definition
is uniquely determined.

Proof: For b ∈ A with b′ ⊂ a′: if b′ \
⋃
{a′i : ai ∈ A?, ai 6= b} 6= ∅, then b ∈ A?.

Else b′ ⊆
⋃
{a′i : ai ∈ A?, ai 6= b} = a′ and either ∃ai ∈ A? : b′ ⊂ a′i (thus b 6∈ A?)

or ¬∃ai ∈ A? : b′ ⊂ a′i (thus b ∈ A?). Thus b ∈ A? or b 6∈ A? is uniquely determined.
NOT-definitions are unique because the context is clarified.

An attribute b that was removed during clarification can be considered a strong syn-
onym or SYN-definition in the form of a := b. As mentioned above, AND-reduction
corresponds to standard FCA ∧-reduction. AND-definitions are not unique because of-
ten several possibilities exist to represent a ∧-reducible concept as a meet of other con-
cepts. OR-reduction focuses on attributes whereas standard FCA ∨-reduction focuses
on objects. Thus, these two notions are different. An OR-reducible attribute must be-
long to a ∨-reducible concept, but not every ∨-reducible concept has an OR-reducible
attribute. In fact OR- and NOT-reducible attributes need not exist at all in a lattice. In a
similar manner, XOR-definitions could be declared as OR-definitions where the a′i are
pairwise disjoint.

Lemma 2. i) The AND-definition of an attribute concept (a′, a′′) is a.
ii) An object concept (o′′, o′) cannot be OR-reducible.
iii) A ∨-reducible concept that is an attribute concept (a′, a′′) and not an object concept
can always be made OR-reducible by adding further attributes to the formal context.

Proof: i) Trivial. ii) Because o cannot be in the extension of proper subconcepts of
(o′′, o′). iii) Attributes a1, ..., an can be added so that each lower neighbour of (a′, a′′)

is an attribute concept (a′i, a
′′
i). Because the concept is not an object concept, Def. 1 is

then fulfilled with A? = {a1, ..., an}.
Thus Lemma 1 only states that an OR-definition is unique with respect to a fixed

formal context. Turning each lower neighbour into an attribute concept is always possi-
ble but may not be the best strategy. For example in Fig. 1, oblique is definable as “acute
OR obtuse” even though only one of its lower neighbours is an attribute concept.

Standard FCA implications only use logical AND. Implications that are formed with
combinations of AND and OR are called (cumulated) clauses and are more compli-
cated than standard implications. For example, there is no equivalent to the Duquenne-
Guigues basis for clauses (Ganter & Obiedkov 2016). Because the requirements for an
OR-definition are more specific than just a logical OR, the implications discussed in
the next lemma are not standard FCA clauses. The lemma shows that if attributes are
removed from a context as OR-definitions, some of the implications of the original con-
text can be directly reconstructed from the OR-definitions (as background knowledge)
and the implications of the reduced context.

Lemma 3. For implications involving OR-definitions with a := a1 OR ... OR an:
i) ∀ai : ai → a
ii) a→ x⇐⇒ (a1 OR ... OR an)→ x⇐⇒ (a1 → x) and ... and (an → x)
iii) x→ a⇐⇒ x→ (a1 OR ... OR an)⇐⇒ (x→ a1) or ... or (x→ an)
iv) a1... an → x =⇒ a→ x
v) ∀ai : (x→ aiy =⇒ x→ ay)

Proof: i) Because a′i ⊂ a′. ii) a′1 ∪ ... ∪ a′n ⊆ x′ ⇐⇒ a′1 ⊆ x′ and ... and a′n ⊆ x′.
iii) With A? = {a1, ..., an} it follows that x′ ⊆ a′1 ∪ ... ∪ a′n ⇐⇒ ∃ai ∈ A? : x′ ⊆ a′i
because otherwise x ∈ A?. iv) follows from ii) and the Armstrong rule of composition.
v) because of transitivity of “→”.

Removing an OR-reducible attribute changes a lattice unless the attribute is also
AND-reducible. It would be desirable to develop an efficient algorithm for reconstruct-
ing the implications of an original non-reduced context from the implications of a re-
duced context together with the OR-definitions. Lemma 3 contains some rules for such
an algorithm, but the list is not complete and it is not clear whether it can be completed.
A challenge for such an algorithm is that if several OR-definitions exist, they can mu-
tually affect each other and thus cannot be processed in a linear sequence. It would be
even more desirable if such an algorithm were to convert basis implications into basis
implications. While all implications of an OR-reduced context are implications of its
non-reduced context, applying Lemma 3 to an implication that belongs to a basis does
not guarantee that it results in a basis implication of the non-reduced context. If effi-
ciency is not an issue, then the implications of the non-reduced context can always be
calculated by adding OR-definitions to a formal context as columns (for attributes) that
are unions of other columns. For the purposes of developing schemata as discussed in
the next section, it is sufficient to store those implications that cannot be easily recon-
structed with Lemma 3 in a separate list in addition to the basis implications.

Presumably reconstructing the implications after NOT-reduction is even more com-
plicated. OR-reduction does not change the object order of a lattice. But adding or delet-
ing NOT-reducible attributes does change the object order as shown in Fig. 1. Therefore

removal of NOT-reducible attributes may not in general be advisable. For the same rea-
son, combining AND, OR and NOT in definitions is not even discussed in this paper. A
further reason for removing OR-reducible attributes is because their existence is some-
what arbitrary. In the example in Fig. 1, oblique is OR-definable as “acute OR obtuse”.
There are no similar attributes for “acute OR right” and “obtuse OR right”, but there
could be. It is arbitrary which OR-definitions happen to exist as an attribute and which
do not. Successive OR-reduction might reduce a concept lattice to its object ordering.
Presumably, implications involving object concepts are particularly important whereas
all other implications somewhat depend on how upper level concepts are labelled.

3 Conceptual Schemata and Classes

Learning is a complicated task that consists of memorising information but also acquir-
ing skills and modes of thinking. With respect to conceptual knowledge different modes
of thinking correspond to structuring content in a variety of manners: some information
as concepts, some as implications, clauses or examples and some by techniques for de-
ducing further information from the memorised information. The idea for conceptual
schemata is that they present information in a format that is closer to how information
would be structured for learning purposes. The role of conceptual classes is then to
ensure that the information that is behind a schema is consistent and as complete as
possible. The definitions in this section only provide a general framework and will need
to be specified with further details for actual applications.

Fig. 2 shows the conceptual schema (on the left) for the concept lattice (on the right)
of the example of Fig. 1. In this case the reduced lattice is already quite close to a
schema, except that the top and bottom node are not necessary because they can be de-
duced. Further details about the schema are explained below. Evidence for the adequacy
of the diagram on the left of Fig. 2 is provided by the fact that the German Wikipedia
page about triangles contains basically the same image2 for the “hierarchy of triangles”.
Thus, the Wikipedia authors appear to consider it a suitable summary of knowledge
about basic triangles. Students can memorise that diagram together with the definition
of “oblique” and the fact that acute, right and obtuse are mutually exclusive. Students
can then deduce further implications (such as “obtuse → oblique not equilateral” and
“equilateral→ isosceles acute”) from the memorised information.

The following definitions specify the relationship between conceptual schemata and
classes more precisely. The definitions are similar to standard definitions of formal se-
mantics except that interpretations result in concepts instead of sets.

Definition 3. A (conceptual) class (O,AL, J,N) consists of a set O of formal objects,
a set AL of predicates (or “attributes”, formed according to some language L), a re-
lation J ⊆ O × AL with oJa ⇐⇒ (a(o) is true) and a set N of formal contexts with
(Oi, Ai, Ji) ∈ N for Oi ⊆ O,Ai ⊆ AL, Ji ⊆ J and Ji ⊆ Oi ×Ai. The set of all con-
cepts that can be derived from any of the contexts is denoted by C(O,AL, J,N), the set
of all true statements that can be derived from any of the contexts by T (O,AL, J,N).

2 https://de.wikipedia.org/wiki/Datei:Hierarchie.Dreiecke.png

Implications: equilateral −> isosceles acute
acute obtuse −> ⊥

acute right −> ⊥

obtuse right −> ⊥obtuse right

⊥

⊥

⊥

(equilateral −> isosceles AND acute)

obtuseacute

equilateral

isosceles right

obtuseacute right

equilateral

isosceles

oblique := acute OR obtuse
not_equilateral := NOT equilateral

acute obtuse
acute right

Fig. 2. A conceptual schema (left) and a NOT-OR-reduced concept lattice (right)

A conceptual class is a set of formal contexts which are defined with respect to a
common set of objects and attributes. While it would be possible to consider (O,AL, J)
a formal context itself, it may be too big to compute anything useful for it. Therefore
concepts and implications are only computed for the contexts in N . It is possible for
implications from one n1 ∈ N to contradict implications from another n2 ∈ N , but
that can be avoided by renaming attributes and is a matter of how the data of an ap-
plication is modelled. In this paper, the language L contains expressions formed from
unary predicates and the symbols AND, OR, NOT, → and :=, although the symbol
“AND” is usually omitted as the default operation. In general, L can be more complex.
The implications of a context are considered true for all objects of the context. In this
paper, the examples of classes only consist of a single context where the predicates are
unary attributes. But in general, Def. 3 encompasses a wide variety of possibilities. For
example, a class can be a computer program of a declarative programming language or
a relational database where the elements of O are tuples and a single predicate for each
table determines whether or not a tuple exists in the table.

Definition 4. A (conceptual) schema (RH , RL,B) consists of a set R of head repre-
sentamens, a set RL of (representamen) expressions that are formed using head rep-
resentamens and elements of a language L with RH ⊆ RL and a set B of binary
(representamen) relations B ⊆ RL ×RL.

Further, non-mathematical conditions of conceptual schemata could be formulated,
for example, that a schema should be coherent, focused on a single topic and have a
certain minimal and maximal size. In this paper, the vocabulary of L is AND, OR and
NOT and B := {→, ↪→,=, :=,⊥} with “:=” ⊆ RH × RL, r1 = r2 ⇐⇒ (r1 →
r2, r2 → r1), (r1 := r2 =⇒ r1 = r2) and (r1 ↪→ r2 =⇒ r1 → r2). The relations
are definition (:=), strong synonymy (=), hyponymy (→ or edge in a Hasse diagram),
distant hyponymy (↪→ or arrow in a Hasse diagram) and mutual exclusivity (⊥). Two
expressions are in a distant hyponymy relation if the exact hyponymy chain from one
to the other is not specified. Further syntactic conditions need to be provided for actual
applications. The Hasse diagram on the left of Fig. 2 is an abbreviation for some of the
expressions and the hyponymy relation. Each node corresponds to an expression, either

by itself (“acute”) or as an AND-definition (“isosceles AND acute”), but only involving
hyponyms, not distant hyponyms. The hyponymy relation is the transitive closure of the
edges in the diagram. The hyponymy instance “equilateral→ isosceles AND acute” is
in brackets because it is redundant and can be read from the Hasse diagram.

Expressions and relations in a schema are meaningless strings that are manipulated
according to the rules of a language. In order to evaluate whether expressions and rela-
tions are meaningful or true, they need to be mapped into classes using interpretations.
The following definition specifies that head representamens and expressions are mapped
onto concepts and relations onto true statements.

Definition 5. A schema (RH , RL,B) is interpretable over a class (O,AL, J,N) if a
set I of partial functions (called interpretations) can be defined so that ∀r ∈ RL ∃i ∈
I : i(r) ∈ C(O,AL, J,N) and ∀B ∈ B ∀b ∈ B ∃i ∈ I : i(b) ∈ T (O,AL, J,N).

The definition does not provide any details with respect to how the interpretations
are constructed. Further conditions must be supplied for specific applications. For ex-
ample, if r1 is a hyponym of r2, it should be required that i(r1) <n i(r2) in some
context n. Ideally, there should be exactly one interpretation for each formal context so
that a head representamen can be assigned different concepts for different contexts but
only at most one concept within a single context. Because different relation instances in
a schema can utilise different interpretations, a certain amount of flexibility, ambiguity
or fuzziness is possible. For example, a tomato can be a fruit in one context and a veg-
etable in another context. A schema should not just be interpretable, but also provide
sufficient information about its underlying class as specified in the next definition. All
examples of schemata in this paper fulfil Def. 6.

Definition 6. A schema (RH , RL,B) covers a class (O,AL, J,N) under a set I of
interpretations if each object concept is an interpretation of at least one representamen
expression, if the object order and the relationship between an object concept and its
attribute concepts is an interpretation of some instances of “→” and T (O,AL, J,N)
can be logically derived from interpretations of representamen relations.

4 Two Further Examples of Schemata and Classes

This section provides two further examples for developing conceptual schemata. The
example in Fig. 3 is based on Ganter & Obiedkov (2016) where it is utilised for a dis-
cussion of clauses. According to the example, a driving license is passed exactly if both
the theoretical and the driving part are passed and failed if one of them is failed. Ganter
& Obiedkov argue that the 8 implications of the lattice do not represent the information
in a natural manner. Instead they are suggesting to use 6 clauses and 2 implications.
A difference between the clauses of Ganter & Obiedkov and the OR-definitions in this
paper is that OR-defined attributes can be removed from the set of attributes before cal-
culating the remaining implications. Thus the set of implications becomes smaller. The
example in Fig. 3 shows that after defining the attribute “license fail” as “driving fail OR
theory fail” and then removing it from the formal context, only four relation instances
corresponding to implications are left. The first two correspond to both directions of

an AND-definition (“license pass” as “driving pass AND theory pass”). The other two
state that passing and failing each part of a driving test is mutually exclusive. Thus the
schema on the left of Fig. 3 presents all relevant information and covers the class on the
right in a succinct manner.

driving_theory_

⊥driving_pass driving_fail
⊥theory_pass theory_fail

license_fail := driving_fail OR theory_fail

pass passfailfail

license_pass

license_fail

fail fail pass pass

license_pass

.
(license_pass := theory_pass AND driving_pass)

theory_driving_driving_theory_

theory_driving_

Fig. 3. A conceptual schema (left) for the driving license example (right)

The final example of this paper is based on Ganter & Wille (1999) and consists of
properties of binary relations as defined in the following table3.

property definition
reflexive ∀a ∈ A : aRa
irreflexive ∀a ∈ A : ¬aRa
symmetric ∀a, b ∈ A : aRb→ bRa
asymmetric ∀a, b ∈ A : aRb→ ¬(bRa)
antisymmetric ∀a, b ∈ A : aRb and bRa→ a = b
transitive ∀a, b, c ∈ A : aRb and bRc→ aRc
semiconnex ∀a 6= b ∈ A : aRb or bRa
connex ∀a, b ∈ A : aRb or bRa

The concept lattice in Fig. 4 follows Ganter & Wille (1999). But it contains addi-
tional AND-defined attributes, such as “preorder := reflexive AND transitive”. It also
contains some attributes about extreme cases. The example assumes that the relations
R are defined as R ⊆ S × S for a non-empty set S. It may seem counter-intuitive that
a relation can be both an order relation and an equivalence relation or symmetric and
antisymmetric at the same time because that is only possible for extreme cases with at-
tributes such as R = S × S, R = {(i, j) | i = j}, |S| = 1 or R = {}. These attributes
are included in the lattice.

Supplemental concepts are identified in Fig. 4 using background knowledge about
binary relations. OR-definitions are only applicable to supplemental concepts. In the

3 It should be remarked that the notions “semiconnex” and “connex” are used ambiguously in the
literature. Sometimes “connex” is used instead of “semiconnex” and “strong connex” instead
of “connex”.

R={(i,j)| i=j}

reflexive

symmetric symmetric

irreflexive

transitive
anti−

preorder

posetpreorder relation
total

relation

relation
tolerance

order
strict partial

strict total
order

equivalence
partial

equivalence

asymmetric

connex
semi−

total order R = S x S

|S| =1

R = {}

connex

Fig. 4. A conceptual class of types of binary relations

previous examples, the concept lattices had supplemental concepts higher up in the
lattice which could be removed using OR-definitions. This example only has very few
supplemental concepts which are at the bottom of the lattice. These could be removed
by introducing more attributes according to Lemma 2, but that does not reduce the
complexity of the lattice significantly and increases the set of implications. Instead, the
suggestion for developing a conceptual schema in this example is to extract meaningful
parts of the lattice. Fig. 4 indicates a subdivision according to whether a relation is
reflexive, irreflexive or neither. But such a division groups equivalence relations closely
with order relations which are separated from strict orders. Thus it seems more natural
to consider symmetric and NOT-symmetric as the main dividing factor for types of
binary relations. Therefore, Fig. 5 and Fig. 6 divide the conceptual schema of binary
relations into 3 parts: those that are not symmetric and tend to be orders, those that
are symmetric and closely related to equivalence relations and the extreme cases at the
bottom of the lattice which are antisymmetric and symmetric at the same time.

reflexive irreflexive ⊥

(transitive AND irreflexive −> asymmetric)

orderpreorder
total

total order strict total
order

strict partial
order

asymmetric

semiconnex antisymmetric irreflexivereflexive

connex

transitive

partial

preorder

Fig. 5. Conceptual schema for types of binary relations: part 1

∈

transitive

symmetric AND antisymmetric −> transitivereflexive AND symmetric AND semiconnex −> transitive

relation

R = S x S

{(1,1),(1,2),(2,1),(2,2)},{1,2}

equivalence

R = {}

connex

{(1,1)},{1} {},{1}

{(1,1)},{1,2}
{},{1,2}

(i,j) R=> i=j

semi−
connex

antisymmetric symmetric

irreflexivereflexive

{(1,1),(2,2)},{1,2}
|S|=1 semiconnex

partial
relation

asymmetric

preorder

preorder

transitivereflexive

total

{(1,1),(1,2),(2,2)},{1,2}

connex

symmetric

relation

tolerance

equivalence

Fig. 6. Conceptual schema for types of binary relations: parts 2 and 3

The three parts of the schema in Fig. 5 and Fig. 6 are derived from the lattice of
the class by deleting and restricting some attributes. Restricting means in this case that
an attribute is replaced by its meet with another attribute. For example, in Fig. 5, the
attribute “symmetric” is deleted and the attributes “reflexive”, “semiconnex” and “con-
nex” are replaced by their meet with “transitive” which results in distant hyponyms
in the schemata. AND-definitions involving distant hyponyms cannot be read from the
Hasse diagrams of the schemata. The left schema in Fig. 6 is derived by deleting the
attributes “antisymmetric”, “asymmetric”, “irreflexive” and “semiconnex”. The right
schema is derived by restricting all attributes to their meet with “antisymmetric”, “sym-
metric” and “transitive”. For the non-restricted attributes, the hyponymy relation of the
schema corresponds to the subconcept relation of the class and results in the same im-
plications. The restricted attributes are considered distant hyponyms because their im-
plications are not completely contained in the parts of the schema. All phrases in Fig. 5
are head representamens. In Fig. 6, the phrases and formulas that are written above
the nodes are head representamens. The strings below the nodes represent prototypical
examples and are not head representamens. The conceptual class contains four implica-
tions which are not just AND-definitions. Each of these four implications is included in
the part of the schema where it is visible. In this case, even the schemata are still quite
complex. But that is due to the subject manner. Learning all the relevant information
about the head representamens in Fig. 5 and Fig. 6 will require a significant amount of
time.

5 Conclusion

In summary, conceptual classes and schemata mutually influence each other. In some
cases, it might be more suitable to extract a class from a schema using some form of
conceptual exploration. In other cases, a schema can be constructed after reducing a
class. The following strategies can be employed:

• Possibly splitting the context into smaller coherent subcontexts
• Conceptual exploration (for completing the set of objects and attributes)

• Purifying the lattice, adding SYN-definitions
• AND-reduction
• OR-reduction
• Further OR-reduction after adding attributes according to Lemma 2
• NOT-reduction

The motivation behind this strategy is that with respect to relationships between
conceptual schemata and classes, the core content of a class is retained in its object
concepts, their ordering and the AND-definitions of object concepts. The concepts that
are above the object order may be less important, in particular if they are supplemen-
tal concepts, because they tend to represent attributes that may be expressible as OR-
definitions.

References

1. Berry, A.; Gutierrez, A.; Huchard, M.; Napoli, A.; Sigayret, A. (2014). Hermes: a simple and
efficient algorithm for building the AOC-poset of a binary relation. Annals of Mathematics
and Artificial Intelligence, 72, 1, p. 45-71.

2. Carbonnel, J.; Bertet, K.; Huchard, M.; Nebut, C. (2016). FCA for software product lines
representation: Mixing configuration and feature relationships in a unique canonical represen-
tation. In: Concept Lattices and their Applications (CLA’16), CEUR, p. 109-122.

3. Ganter, B.; Wille, R. (1999). Formal Concept Analysis. Mathematical Foundations. Springer.
4. Ganter, B.; Obiedkov, S. (2016). Conceptual Exploration. Springer.
5. Ganter, B. (2019). “Properties of Finite Lattices” by S. Reeg and W. Weiß, Revisited. In:

Cristea et al. (eds) Formal Concept Analysis. ICFCA 2019. LNCS 11511, Springer, p. 99-109.
6. Lakoff, G. (1987). Women, Fire, and Dangerous Things. What Categories Reveal about the

Mind. The University of Chicago Press.
7. Lopez-Rodriguez D., Cordero P., Enciso M., Mora A. (2021). Clustering and Identification

of Core Implications. In: Braud et al. (eds.) Formal Concept Analysis. ICFCA 2021. LNAI
12733, p. 138-154.

8. Osswald, R.; Petersen, W. (2002). Induction of classifications from linguistic data. In: Proc.
of the ECAI-Workshop on Advances in Formal Concept Analysis for Knowledge Discovery
in Databases.

9. Prediger, S. (1998). Simple concept graphs: A logic approach. In: Mugnier et al. (eds.) Con-
ceptual Structures: Theory, Tools and Applications. ICCS 1998. LNCS 1453, Springer, p.
225-239.

10. Priss, U.; Old, L. J. (2010). Concept Neighbourhoods in Lexical Databases. In: Kwuida;
Sertkaya (eds.), Formal Concept Analysis. ICFCA 2010. LNCS 5986, Springer, p. 283-295.

11. Priss, U.; Old, L. J. (2011). Data Weeding Techniques Applied to Roget’s Thesaurus. In:
Wolff et al. (eds.) Knowledge Processing and Data Analysis. KPP 2007. LNAI 6581, Springer,
p. 150-163.

12. Priss, U. (2017). Semiotic-Conceptual Analysis: A Proposal. International Journal of General
Systems, 46, 5, p. 569-585.

13. Priss, U. (2021a). Diagrammatic Representation of Conceptual Structures. In: Braud et
al. (eds.) Formal Concept Analysis. ICFCA 2021. LNAI 12733, p. 281-289.

14. Priss, U. (2021b). Conceptual Schemata as a Means for Structuring Teaching Materials. In:
Concepts in Action: Representation, Learning, and Application (CARLA’21). Available at:
https://www.conceptuccino.uni-osnabrueck.de/carla workshop/carla 2021.html

