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Abstract. This paper discusses an interpretation of relation algebra and fork al-
gebra with respect to FCA contexts. In this case, “relation algebra” refers to the
DeMorgan-Peirce-Schroeder-Tarski algebra and not to the “relational algebra”
as described by Codd. The goal of this interpretation is to provide an algebraic
formalisation of object-relational databases that is based on binary relations and
thus closer to FCA and formal contexts than the traditional formalisation based
on Codd. The formalisation provides insights into certain symmetries (among
quantifiers) and the use of ternary relations and part-whole relations for building
relational databases.

1 Introduction

Algebras of relations, such as Codd’s (1970) relational algebra (RLA) or Peirce-Tarski’s
relation algebra (RA)1, have been studied by logicians since the mid 19th century. But
apart from the use of RLA in relational databases, relational methods have not been
in the mainstream for more than a hundred years, even though they have promising
applications. Only during the past 15 years, there has been an increased interest in “Re-
lational Methods in Computer Science” as evidenced by the creation of a new journal
in this area2.

Relational methods can be considered a “paradigm” that is different from some set-
based logical formulas because a relational representation abstracts from elements and
certain quantifiers. Programming languages that are based on relational methods tend
to be more of a non-functional, list processing character. Users sometimes find such
languages or formalisms difficult to read - as has been documented with respect to the
relational database language SQL (eg. Hansen & Hansen (1988)). This may explain why
relational methods are only slowly gaining more popularity. Nevertheless, relational
methods have interesting applications and because of the recent interest in relational
methods in computer science and because RA and FCA share common structures, we
believe that a detailed discussion of FCA and RA is of interest to the FCA community
and provides links to this newly emerging research area.

? This is a preprint of a paper published in Missaoui; Schmidt (eds.), Formal Concept Analysis:
4th International Conference, ICFCA 2006, Springer Verlag, LNCS, 2006, p. 248-263.
c©Springer Verlag.

1 In this paper “RLA” is used as an abbreviation for Codd’s relationalalgebra and “RA” for a
Tarski-style relation algebra.

2 http://www.jormics.org



A combination of RA and FCA can be used to analyse formal aspects that under-
pin relational and object-relational databases. Current RLA-based implementations of
databases are highly optimised with respect to functionality and efficiency. But RA can
provide new insights into the structural properties of relational databases, such as into
certain symmetries (among quantifiers) and the use of ternary relations and part-whole
relations for relational databases. Currently, there does not exist a widely accepted ex-
tension of RLA to object-relational databases (cf. Atkinson et al. (1989)). A broader
approach using a variety of algebras (including RA and RLA) may lead to such a for-
malisation of object-relational databases and formal ontologies. With respect to FCA,
this paper shows that RA is sufficiently expressive to represent basic FCA notions and
a fork extension of RA is sufficient to represent many-valued contexts and power con-
texts.

This paper presents a continuation and elaboration of some ideas which were pre-
sented in a preliminary form by Priss (2005). But in contrast to Priss (2005), this paper
adds a more detailed mathematical presentation, a use of fork algebras, a distinction
between a “named” and an “unnamed” perspective and a more detailed elaboration of
relational schemata.

2 Algebras of Relations: Codd versus Tarski

The most influential algebra that is currently used in computer science is probably RLA
because it serves as the foundation of relational databases. It is not a trivial task to math-
ematically formalise RLA in detail with respect to relational databases - as indicated by
the fact that at least four different types of suggestions for such formalisations of RLA
exist (Abiteboul et al., 1995). Because of this and because RLA uses n-ary relations, it
is also not trivial to combine relational databases directly with Formal Concept Analy-
sis (FCA). Wille’s (2002) notion of power context families incorporates n-ary relations
into FCA, but it does not cover all the detail of relational databases and RLA. Hereth
(2002) has made some progress with respect to RLA and FCA.

Although Codd (1970) is usually quoted as the inventor of RLA (and he certainly
advocated the practical use of it), a more detailed and comprehensive description of
algebras of relations was provided by Tarski in the 1940s (cf. Van den Bussche (2001)
for an overview). Tarski described two types of algebras: RA and Cylindric Set Algebra,
which according to Imielinski & Lipski (1984) is closely connected to RLA. The idea
of RA can be traced back from Tarski (1941) to Peirce and de Morgan and Schröder (cf.
Pratt (1992) for an overview). In contrast to RLA which has expressive power equivalent
to first order logic, the expressive power of RA is only equivalent to first order logic
with at most 3 distinct variables (cf. Van den Bussche (2001)). Thus RA is much less
powerful than RLA. But there is an extension of RA called “fork algebra”, which is
equivalent to first order logic. Because of a close relationship between RA and binary
relations, it is of interest to consider RA and fork algebra together with FCA.

3 Relation Algebra: Definition and Overview

The following definition follows Tarski and is adapted from Brink et al. (1992):



Definition 1 A relation algebrais an algebra(R,+, ·,′ , 0, 1, ; ,^ , e) satisfying the
following axioms for eachr, s, t,∈ R:
R1 (R,+, ·,′ , 0, 1) is a Boolean algebra R5(r + s); t = r; t + s; t
R2 r; (s; t) = (r; s); t R6 (r + s)^ = r^ + s^

R3 r; e = r = e; r R7 (r; s)^ = s^; r^

R4 r^^ = r R8 r^; (r; s)′ ≤ s′.
If R in Definition 1 is a set of binary relations, then the following can be defined:

Definition 2 A proper relation algebra(RA) is an algebra(R,∪,− , one, ◦,d , dia)
where for a setA and an equivalence relationone ⊆ A×A, R is a set of binary relations
equal to the powerset ofone anddia := {(x, x) ∈ one} and forI, J ∈ R:
I ∪ J := {(x, y) | (x, y) ∈ I or (x, y) ∈ J}; I := {(x, y) | (x, y) ∈ one, (x, y) 6∈ I};
I ◦ J := {(x, y) | ∃z∈A : (x, z) ∈ I and(z, y) ∈ J}; Id := {(x, y) | (y, x) ∈ I}.

Table 1.Overview of basic RA operations and some extensions

RA Tarski’s name basis definitions
∪ + union yes
− ′ negation (complement) yes

∩ · intersection I ∩ J := I ∪ J

◦ ; composition yes
d ^ inverse (dual) yes

• j+ de Morgan compl. of◦ I • J := I ◦ J

nul 0 nul := one
one 1 universal relation yes
dia e diagonal yes

⊆ I ⊆ J :⇔ I ∩ J = I
= equality I = J :⇔ I ⊆ J andJ ⊆ I
⊂ containment I ⊂ J :⇔ I ⊆ J and notI = J
trs transitive closure (yes) Itrs := I ∪ I ◦ I ∪ I ◦ I ◦ I ∪ . . .
? refl. trans. closure I? := dia ∪ Itrs

Different authors use different symbols for RA operations. It is common to list the
Boolean operators before the non-Boolean ones in the signature of the algebra. It is
also common to use Tarski’s notation (+, ·, ; , 0, 1) for relation algebras and∪,∩,− and
other symbols for proper relation algebras. The left column of table 1 shows the nota-
tions used in this paper. For the purposes of this paper, a mapping from an equational
class (as in definition 1) to an algebra which has elements with set-theoretically defined
structure (as in definition 2) is called an “interpretation”. Apart from interpreting rela-
tion algebras with respect to binary relations, they can also be interpreted with respect
to FCA contexts, as shown in later sections of this paper. Pratt (1993) observes that only
the non-Boolean operations(◦,d ) make use of the inner structure of the elements of the
relations (such as inverting the pairs usingd). For the Boolean operations (∪,∩,−), re-
lations are just sets. It has been shown by Lyndon (1950) that there are interpretations
of relation algebras which are not isomorphic to proper relation algebras. In this pa-
per, only proper relation algebras are considered and their notational symbols are used.
“RA” stands for proper relation algebra in the remainder of this paper. Based on defi-



nition 2, a representable relation algebra (RRA) is usually defined as a subalgebra of a
proper relation algebra. The class RRA forms a variety (Tarski, 1955).

The top half of table 1 shows how other common operations and elements of RA
can be derived from the basis operations and elements. Numerous mathematical (or
logical) properties can be proven for RA (cf. Maddux (1996), Pratt (1992), Pratt (1993),
Van den Bussche (2001), Kim (1982)). There are numerous applications for RA, which
obviously include and extend applications of Boolean algebras. Apart from applications
in logic, RA has been used for the semantics of programming languages (Maddux,
1996). Pratt (1993) explains that RA is very similar to Chu spaces.

The bottom half of table 1 shows some extensions of RA: equality and transitive
closure. For this paper, equality and containment is assumed to be defined for RA.
Transitive closure is not a first order logic property and cannot be derived from the
other RA operations. It can be useful in some applications to have transitive closure
available. For example, ifI represents the incidence matrix of a graph, thenItrs shows
all transitive paths between the graph nodes. We believe that a major reason for the
recent popularity of XML for ontologies and other tree-like structures is because the
calculation of paths in a tree is natural for XML but difficult in SQL. In fact, only
the more recent SQL standard (SQL3) contains a suggestion for a recursion operator
that can be used for calculating paths in a tree. Unfortunately, the implementation of
this operator is inconsistent among different database vendors (Wagner, 2003). The
reasons for this may be that transitive closure is missing from RLA and that it can
be computationally expensive to calculate transitivity. Nevertheless, we believe, that if
transitive closure had been added to SQL at an earlier stage, the history of XML as a
format for representing ontologies might have been different. This brief excursus on
XML and databases should indicate the significance of the presence or absence of a
transitive closure operation. In this paper, we assume that transitive closure is available
as needed.

4 RA Interpretations as FCA Contexts

4.1 Active Domains

In analogy to relational database theory, an “active domain” (ACT) is introduced for the
purposes of this paper. In relational database theory, an active domain is the finite set of
actually occurring values and value combinations, which is a subset of the infinite “uni-
verse” (U) of possible values. For example, the complement of a relation in relational
databases is usually calculated with respect to the active domain to avoid the use of in-
finite sets. Relational databases contain finite sets of data at any point in time, but a fork
operation as introduced in section 5.2 requires an infinite set of elements at all times.
To cope with the infinity of the fork operation, the following two sets are defined in this
paper: a set of identifiers containing a finite set of even-numbered identifiers (EVN) and
an infinite set of odd-numbered identifiers (ODD). Even-numbered identifiers are used
for actual, persistent or “important” data and odd-numbered ones are used for poten-
tial, transient or “un-important” data. This distinction follows the practise of object-
relational databases which automatically generate “object identifiers” for instances of
tables. It also follows the distinction between “persistent” data (for data that may need



to be reused in other applications and should be stored) and “transient” data (which can
be forgotten, such as the values of a counter) by Atkinson et al. (1989). It should be
noted that even though the set of even identifiers is finite and fixed at any point in time,
it can change over time if new data is added to an application (eg. if database tables
are updated). In addition to the sets of identifiers, there is also a finite setN of named
elements of a relational database (i.e., names of tables, columns, values, etc).

Definition 3 A universeof possible elements is a setU := N ∪ EVN ∪ ODD whereN
is a finite set of names,EVN is a finite set of even-numbered identifiers andODD is an
infinite set of odd-numbered identifiers andN, EVN, andODD are pairwise disjoint. An
active domainis a finite subset ofU defined asACT := N ∪ EVN. For practical purposes,
ACT is assumed to have a fixed linear order.

4.2 The unnamed perspective

There are potentially numerous ways for using RA with respect to FCA. Because formal
contexts are usually represented as cross tables, for the rest of this paper binary relations
are viewed as Boolean matrices (or binary matrices or cross-tables) in the sense of
Kim (1982). In analogy to a distinction made in relational database theory (Abiteboul,
1995), we distinguish between an “unnamed perspective” and a “named perspective”.
In the unnamed perspective, all data of an application, i.e., all formal contexts of an
application, are represented as (possibly large) matrices of the same dimension3:

Definition 4 In the unnamed perspective, with|A| := |ACT| × |ACT|, an active
domainA is the set of all binary|A|-dimensional matricesI so that semantically for all
elements inACT, the nth element inACT corresponds to the nth row and column inI. It
is then said thatI is based onA denoted byIA.

The subscriptA in IA can be omitted if it clear from context. Obviously, it would
be impractical for most applications to actually construct such large matrices. The
unnamed perspective is mainly used to define some operations in a somewhat more
context-independent manner, which can be useful for certain context compositions in
the named perspective. Otherwise, the unnamed perspective is mostly of theoretical
value. Each object or attribute of any formal context relating to a single application is
uniquely identified by its position inA. Row and column permutations change the val-
ues of rows and columns but not their semantic correspondence to elements inA (thus
may not be meaningful operations). Even though, the names of the elements inACT are
not strictly required, it is usually more convenient to use them instead of using row and
column numbers.

The next definition assumes the usual operations for Boolean matrices (cf. Kim
(1982)), i.e., with(i, j)I denoting the element in rowi, column j in matrix I and
∨, ∧ and¬ denoting Boolean OR, AND and NOT:(i, j)I∪J := (i, j)I ∨ (i, j)J ;
(i, j)I := ¬(i, j)I ; (i, j)I◦J := 1 iff ∃k : (i, k)I ∧ (k, j)J ; (i, j)Id := (j, i)I . A
matrix is symmetric ifI = Id, reflexive ifdia ⊆ I, transitive ifI2 ⊆ I. Because matrix

3 In the rest of this paper, typewriter font (A, B, etc) is used for subsets and elements ofACT and
uppercase italics (I, J etc) for matrices and binary relations. If elements ofACT are used in
names of matrices, then they are written in italics but underlined (but not if used as subscript).



operations and operations on binary relations are so similar, we use a set-theoretic no-
tation for both. The distinction between sets and matrices is made using typeface (see
footnote 3).

Definition 5 A matrix-RA based onA is an algebra(R,∪,− , one, ◦,d , dia()) where
one ∈ R is a reflexive, symmetric and transitive matrix;R is a set of Boolean matrices
based onA with I ∈ R ⇔ I ⊆ one; and∪,− , ◦,d are the usual Boolean matrix
operations; and for any setS ⊆ ACT anda(n) denoting the nth element inACT, dia(S)
is defined by(i, j)dia(S) = 1 iff i = j anda(i) ∈ S (but only if dia(S) ⊆ one).

Table 2 summarises the definition and introduces some further operations (with
G, M, S ⊆ ACT). The operation∩ is still the de Morgan complement of∪. nul can be
derived fromdia or via nul = one. Because binary relations can be equivalently rep-
resented as sets of pairs or as binary matrices it follows that:

Lemma 1 Definitions 2 and 5 are equivalent: every RA is a matrix-RA and vice
versa.

It is not necessary to use sets (S, ACT) in definition 5. Instead of definingdia(S), one
could definedia and then derivedia(I→), dia(I↑) and state that every matrixJ ⊆ dia
corresponds to a set. Thus the algebra in definition 5 is not truly two sorted. But the
use ofdia(S) is convenient with respect to the named perspective. The other definitions
from table 2 can be explained as follows: the matricesdia(I↑) anddia(I→) represent
column-wise and row-wise projections of a matrixI onto the diagonal. Fordia(I↑) this
means that for each column inI that contains at least one 1,dia(I↑) contains a 1 in
that position on the diagonal. A matrixsqr(G, M) contains a 1 for each cell whose row
name is inG and whose column name is inM. sqr(G, M) is an encoding of an empty
cross table of a formal context based onA. A formal context can now be represented as
(sqr(G, M), I) whereG, M ⊆ ACT andI is a matrix based onA with I ⊆ sqr(G, M).

Table 2.The unnamed perspective: A matrix-RA based onA

notation definition basis
∪ component-wise∨ yes
− component-wise− yes
◦ binary matrix multiplication yes
d matrix transposition (mirrored along diagonal)yes

nul := dia ∪ dia
dia := dia(ACT)

dia(S) has 1’s according toS yes
dia(I↑) := dia ∩ (one ◦ I) = Id ◦ I ∩ dia

dia(I→) := dia ∩ (I ◦ one) = I ◦ Id ∩ dia
sqr(G, M) := dia(G) ◦ one ◦ dia(M)

Definition 6 A context-RA based onA for a set of formal contexts is the smallest
matrix-RA based onA that contains these contexts.

This means that for a context(sqr(G, M), I) the context-RA contains all contexts
that have any subsets ofG ∪ M as sets of objects and attributes. It should be noted that a
smaller RRA could be constructed that contains a set of contexts, ifR in definition 5 was
not required to contain all matricesI ⊆ one. But since the prime operator (′) in FCA is



normally applicable to all subsets of objects or attributes, definition 5 (which allows the
formation of matrices corresponding to subsets) seems reasonable. Subsets ofG andM
can be represented as diagonal matrices or as matrices which contain identical rows (eg.
sqr(ACT, S)) or identical columns (eg.sqr(S, ACT)). These three ways are equivalent
because the matrices can be converted:dia(S) = sqr(ACT, S)∩dia = sqr(S, ACT)∩dia
andsqr(ACT, S) = one ◦ dia(S).

Lemma 2 In the unnamed perspective the basic FCA operations can be represented
as summarised in table 3.

Table 3.Basic FCA operations in the unnamed perspective

standard FCA RA: unnamed perspective
gIm sqr({g}, {m}) ⊆ I

g′ := {m ∈ M | gIm} dia(g′) = dia(g+) := dia ∩ sqr(ACT, {g}) ◦ I

H′ := {m ∈ M | ∀g∈G : g ∈ H =⇒ gIm} dia(H ′) = dia ∩ sqr(ACT, H) ◦ I
H+ := {m ∈ M | ∃g∈G : g ∈ H andgIm} dia(H+) = dia ∩ sqr(ACT, H) ◦ I

The equivalence of the expressions in the left and right columns in table 3 follows
directly from the definitions. But a further explanation of the table is required: a context
(sqr(G, M), I) is assumed withH ⊆ G; N ⊆ M; g ∈ G; m ∈ M. The plus (+) oper-
ator, which is somewhat dual to the prime (′) operator originates from use in lexical
databases (cf. Priss(1998) and Priss & Old (2004)). The operations for sets of attributes
are analogous to the ones for sets of objects in table 3.

4.3 The named perspective

In contrast to the unnamed perspective where all matrices of an application are of di-
mension|A|, in the named perspective matrices can have different dimensions and may
not even be square.

Definition 7 In the named perspective, theactive domainACT is linearly ordered.
A formal context(G, M, I) based onACTconsists of two setsG, M ⊆ ACT, which are
linearly ordered using the byACT-induced ordering, and of a binary matrixI of dimen-
sion |G| × |M| where the ith row corresponds to the ith element inG and the jth column
corresponds to the jth element inM. This can be denoted asIG,M.

Semantically, this implies a unique name assumption because if the same name is
used in different formal contexts or in a single context both as an object and as an
attribute, then these elements are semantically indistinguishable because they refer to
the same element inACT. The unique name assumption ensures that the operations∪
and◦ can be meaningfully generalised to contexts of different dimensions as follows:

Definition 8 For formal contextsK1 := (G1, M1, I) andK2 := (G2, M2, J) the fol-
lowing context operationsare defined:
K1 t K2 := (G1 ∪ G2, M1 ∪ M2, I t J) with gI t Jm :⇐⇒ gIm or gJm
K1 u K2 := (G1 ∪ G2, M1 ∪ M2, I u J) with gI u Jm :⇐⇒ gIm andgJm
K1 � K2 := (G1, M2, I � J) with gI � Jm :⇐⇒ ∃n∈(M1∩G2) : gIn andnJm
K1 := (G1, M1, I); Kd

1 := (M1, G1, I
d).



Table 4 shows some further operations that can be defined for formal contexts in the
named perspective. Most of the operations are essentially the same as in the unnamed
perspective. Becausedia is square, one set as subscript is sufficient (diaG := diaG,G).
In addition to operations which convert a set into a matrix (diaM(S→)), there are also
operations which convert a matrix into a set:setG(I). Union potentially enlarges the
dimension of the original matrices. A reduction operationredG,M(J) eliminates all rows
and columns from a matrixJ which do not correspond to elements inG andM, re-
spectively. The following holds for context composition:K1 � K2 = (G1, M1 ∪ G2, I t
nulG1,G2) ◦ (M1 ∪ G2, M2, J t nulM1,M2)

Table 4.Further context operations

K1 ∪ K2 := K1 t K2 if G1 = G2, M1 = M2

K1 ◦ K2 := K1 � K2 if M1 = G2
K1
K2

:= K1 t K2 if G1 ∩ G2 = ∅ andM1 = M2

K1|K2 := K1 t K2 if G1 = G2 andM1 ∩ M2 = ∅
diaG(S→) see definition 9
diaM(S↑), diaG(I→), diaM(I↑) analogous todiaG(S→)
setG(I), setM(I) see definition 9,setG(I) = setG(diaG(I→))

nulG,M := IG,M ∪ IG,M
redG,M(J) := diaG � JG1,M1 � diaM

colG(S) := diaG(S→) ◦ oneG,{x}
rowM(S) := one{x},M ◦ diaM(S↑)

Definition 9 A context algebraic structure (CAS) based onACT is a three sorted
algebra(R1, R2, R3,t,− , �,d , dia(), set(), (, , )) whereR2 is a set of subsets ofACT,
R3 is a set of Boolean matrices,R1 is a set of formal contexts based onACT and con-
structed using the partial function(, , ) : R2

2 × R3 → R1; t,− , �,d are according
to definition 8;setG(I) := {g ∈ G | ∃m∈M : gIm}; setM(I) := {m ∈ M | ∃g∈G : gIm};
anddiaG(S→) is defined by(i, j)diaG(S→) = 1 iff i = j and for the ith element inG:
g(i) ∈ S.

The algebra in definition 9 is not a RA because formal contexts have differentnul
elements and composition from the left and the right may require a differentdia el-
ement. But presumably a homomorphism can be constructed that maps each context
(G, M, I) onto a pair(sqr(G, M), I), that maps all diagonal matrices ontodia and all
null matrices ontonul, and that maps the other operations accordingly resulting in a
context-RA. (The details of this are left to future research.)

Table 5.Basic FCA operations in the named perspective

standard FCA CAS
gIm gd ◦ I ◦md = (1)

g′ := {m ∈ M | gIm} g′ = g+ := gd ◦ I

H′ := {m ∈ M | ∀g∈G : g ∈ H =⇒ gIm} H ′ := Hd ◦ I

H+ := {m ∈ M | ∃g∈G : g ∈ H andgIm} H+ := Hd ◦ I



Lemma 3 In the named perspective the basic FCA operations can be represented as
summarised in table 5.

The following conventions are used in table 5: for a context(G, M, I); H ⊆ G; N ⊆
M; g ∈ G; m ∈ M; H := colG(H); g := colG({g}). As declared in footnote 3, the matrix
names derived from elements ofACT are underlined (such asg). In the first row,(1) is a
1× 1 matrix with element 1. In the named perspective, sets are best represented as row
or column matrices. BecauseG andM need not be disjoint, it can be ambiguous whether
g is a row or column. In that case, the notationsg

c
:= colG({g}) andg

r
:= rowM({g})

can be used. In table 5,H ′ is a row matrix butH andH ′′ are column matrices.H ′′

is calculated dually toH ′ by composition withI from the left:H ′′ = I ◦Hd ◦ I
d

=

I ◦ I
d ◦H. The notations from the unnamed and named perspective are compatible

with each other and can be used together.

4.4 Eight quantifiers

The use of negation and composition in the calculation ofH ′ andH+ raises the question
as to whether other combinations of negation and composition are of interest. Table
6 summarises all 8 possible combinations of negation and composition for a context
(G, M, I) and a setN ⊆ G. The third column in that table provides a rough linguistic
description, which should be taken with caution because words such as “only” are fairly
ambiguous in natural languages. In many applications, these 8 quantifiers result in 8
different sets, which together describe the relationship ofN andG in some detail. In
the next section, an example of a lattice construction is provided that summarises all 8
quantifiers in one diagram. It should be noted that with respect to relational databases,
it can be quite challenging to formulate these 8 quantifiers in SQL because the “ALL”
quantifier (corresponding to the so-called relational division in RLA) is not a primitive
operation in SQL. In fact to represent this “ALL” quantifier in SQL, two sub-select
statements are required (cf. Priss (2005) for an example).

Table 6.Eight Quantifiers

N+ I ◦N at least one, some
G \ N+ I ◦N none

N′ I ◦N relates to all
G \ N′ I ◦N does not relate to all
(M \ N)+ I ◦N relates to those that are not only

G \ ((M \ N)+) I ◦N relates to those that are only

(M \ N)′ I ◦N relates to all outwith
G \ ((M \ N)′) I ◦N does not relate to all outwith

4.5 Compositional schemata

To represent more complex data than just a single relation using RA some kind of
canonic means for translating complex data into binary relations is needed.



Definition 10 A compositional schemaconsists of a set of 4 or 9 formal contexts,
which are arranged in a tabular manner, (cf. figure 1) so that some of the contexts can
be derived from adjacent contexts using composition.

The idea of compositional schemata is not new. There have been many papers on
FCA which use such schemata explicitly or implicitly (eg. Ganter & Wille (1999), Priss
(1998), Faid et al. (1997)). By identifying certain types of compositional schemata, their
properties can be described in a general manner.

A B
A 1 2
C 3 4

A B C
B 1 2 3
A 4 5 6
D 7 8 9

A B C
B L

A J J ◦ L

D I I ◦ J I ◦ J ◦ L

Fig. 1.A compositional schema

The numbering of the four or nine cells as presented in the left hand side of figure 1
is used in the remainder of this paper. In the case of nine cells, the compositional schema
is built from the formal contextsKJ := (A, B, J); KI := (D, A, I) andKL := (B, C, L).
BecauseKI andKJ share the setA, a contextKI◦J := (D, B, I ◦ J) can be formed.
Similarly, a contextKJ◦L can be formed. Instead of the existence quantifier used in the
construction of the matrices in cells 6, 8 and 9, any of the other seven quantifiers from
table 6 can be used. A further contextKI◦J◦L can be formed in cell 9 to complete the
schema. It should be noted that whileKJ◦L andKI◦J are formed by composing the
context to the left with the one above,KI◦J◦L is formed by composing the context to
the left with the context two steps above (or the context two steps to the left with the one
above). An exception is ifJ is a reflexive, transitive relation, in which caseJ ◦ J = J
andI ◦ J ◦ L = I ◦ J ◦ J ◦ L. Depending on the application, cells 1, 2, 4 can be filled
with nul or dia or something else. In many cases, it may not be necessary to calculate
a lattice for the context consisting of all 9 cells, but instead only for cells 5, 6, 8, 9 or
just for individual cells. For identifying where objects and attributes are located in the
schema, row and column matrices representing the setsA, B, and so on can be used. For
example, an elementg is an object inKJ if g

c
⊆ Ac.

Figure 2 provides two examples of compositional schemata. The first example can
be constructed for any concept lattice. This example shows a formal context({a, b, c, d},
{1, 2, 3, 4}, I) whereI is the matrix in cell 4 of the schema. After computing the set
of concepts of this lattice, ({A, B, C, D, E} without the top and bottom concept), cell 1
is filled with the conceptual hierarchyIsub; cell 2 is filled with the intension relation
between attributes and concepts (here calledIattr); cell 3 is filled with the extension re-
lation between objects and concepts (calledIinst). BecauseIsub is reflexive and transi-
tive: I = Iinst◦Isub◦Iattr = Iinst◦Isub◦Isub◦Iattr. In this case alsoIinst = Iinst◦Isub

because∃c1 : gIinstc1, c1Isubc2 ⇐⇒ gIinstc2 and the same forIattr.

The bottom half of figure 2 shows a lattice that visualises all 8 quantifiers from table
6. The compositional schema is constructed by insertingdia into cell 1,I into cell 3,
the∈ relation into cell 2, andI ◦N into cell 4. The lattice diagram shows thatI ◦N and

I ◦N are the intensions of the join and meet of the elements inN . I ◦N andI ◦N are
the intensions of the join and meet ofM \N which isN . The other 4 quantifiers need
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Fig. 2.Two examples of compositional schemata

not correspond to single concepts in the lattice but are the set-complements of the first 4
quantifiers. This lattice has the original lattice(G, M, I) as a sublattice. If this lattice was
produced as an answer to a query about elements inN, it would answer many questions
simultaneously: whether elements are at least inN, not inN, just inN, and so on.

5 Relational Schemata and Fork Algebra

5.1 Relational Schemata

This section covers schemata that represent the table structure of a relational database
but without the actual values that are stored in the database and without showing which
tables correspond to what is called “entities” and what is called “relations” in relational
databases. More complex schemata with values and relations are covered in the next
section. Relational schemata are relevant not just for relational databases but also for
object-relational databases. There are some differences between the implementations
(and thus the underlying formalisations) of object-relational databases among different
vendors. For this paper, object-relational databases are considered to have a subtype
relation among tables, i.e., one table can be defined to be a subtype of another table.
This subtype relation is declared to be reflexive, acyclic and transitive. A subtype ta-
ble inherits all columns (attributes) from its supertypes and the instances (rows) of a
subtype are also assigned to its supertypes after deleting non-applicable columns. With



this definition, a relational database is an object-relational database where the subtype
relation is the identity (each table is only subtype of itself).

Definition 11 A relational schema (of an object-relational database) based onACT
is a CAS using a compositional schema according to figure 3 whereTbls is a set of
table names,Inst a set of instances andAttr a set of column names withInst ⊆
ACT; Tbls, Attr ⊆ N, and the sets are pairwise disjoint and linearly ordered according
to ACT. The subschema consisting of the cells 5, 6, 8, 9 is denoted byDB.

Tbls Tbls Attr
Tbls Iattr

Tbls Isub Isub ◦ Iattr

Inst Iinst Iinst ◦ Isub Iisba := Iinst ◦ Isub ◦ Iattr

Fig. 3.The basic relational schema for an object-relational database

It is normally assumed thatIattr has no empty columns and thatIinst has no empty
rows because having instances or attributes which are not in relationship to anything
else is strange. The relational schemaDB is basically the same as the first example of
figure 2 becauseIsub is reflexive and transitive and thus, for example,Iinst ◦ Isub =
Iinst◦Isub ◦Isub. In the line diagram of the lattice ofDB the name of a table is attached
to a node both as an object and as an attribute or in other words:

Theorem 1 For each tablet ∈ Tbls there exists a formal conceptc(t) in the
concept lattice ofDB which hast in its contingent extent and in its contingent intent.
If t1 6= t2 thenc(t1) 6= c(t2).

Proof: as beforetr denote a table among the attributes andtc the same table among
the objects.t′r = {sc∈ Tbls | scIsubtr} ∪ {i ∈ Inst | i(Iinst ◦ Isub)tr} and
t′′c = {sr∈ Tbls | ∀y∈t′c : sr(Isub|Isub ◦ Iattr)y} ∪ {i ∈ Inst | ∀y∈t′c : i(Iinst ◦
Isub|Iisba)y}. Because ofsIsubtr ⇐⇒ ∀y∈t′c : s(Isub|Isub ◦ Iattr)y andi(Iinst ◦
Isub)tr ⇐⇒ ∀y∈t′c : s(Iinst ◦ Isub|Iisba)y it follows that t′r = t′′c . Same fort′c = t′′r .
This implies that(t′′c , t′c) and (t′r, t

′′
r ) describe the same concept which hast in its

contingent. Because the subtype relationIsub is assumed to be acyclic (i.e., a table
cannot be subtype of a second table which is itself a subtype of the first table), there is
a different formal concept inDB for each different table.

The conceptc(t) has all attributes oft in its intension and all instances oft in its
extension. Thus the concept lattice ofDB summarises important information about the
tables of an object-relational database. Another feature ofDB is that different types of
inheritance can be defined and analysed (cf. Priss (2005)). The formal contextCt for a
tablet can be derived asCt = (setInst(tc′), setAttr(tr ′), redGt,Mt(Iinst ◦ diaTbls(t) ◦
Iattr)).

5.2 Fork Algebraic definitions

Tarski showed that RA is equivalent to first order logic with three variables (cf. Van den
Bussche (2001)). An indication for why three variables are sufficient is given by Van den
Bussche’s example:{(x, y) | ∃z (∃y (∃z(R(x, z) ∧R(z, y)) ∧R(y, z)) ∧R(z, y))}.
Tarski further showed that what is missing from RA is a form of “pairing”, i.e., a means



for combining two elements into a pair which then itself behaves like a primitive ele-
ment. This pairing is required to build ternary relations. Different methods for adding a
“pairing axiom” to RA have been suggested (eg. Jain, Mendhekar & Van Gucht (1995)).
The approach which seems to be most widely used and which indeed has expressive
power equivalent to first order logic is called “fork algebra” (Frias et al., 2004). It was
developed in the area of programming language semantics for the purpose of deal-
ing with non-deterministic algorithms. To our knowledge, applications in the area of
databases as we are suggesting in this paper have not been discussed before.

The following two definitions are adapted from (Frias et al., 2004). For the purposes
of this paper the usual operation (∇), is replaced by its relational dual denoted by4.

Definition 12 A fork algebrais an algebra(R,+, ·,′ , 0, 1, ; ,^ , e,4) so that
(R,+, ·,′ , 0, 1, ; ,^ , e) is a relation algebra and for allr, s, t, u ∈ R:
F1 r4 s = ((e4 1); r) · ((14 e); s) F3 (e4 1)d4 (14 e)d ≤ e
F2 (rd4 sd)d; (t4u) = (r; t) · (s;u)

Definition 13A pre-proper fork algebra(FRA) is a two sorted algebra(R, U,∪,∩,−,
nul, one, ◦,d , dia,4, frk()) where(R,∪,∩,− , nul, one, ◦,d , dia) is a RA on a setU;
a binary functionfrk : U × U → U is injective on the restriction of its domain toone;
the operation4 is defined asI4 J := {(frk(x, y), z) | (x, z) ∈ I; (y, z) ∈ J} andR
is closed under4.

Proper fork algebras are defined somewhat more abstractly than pre-proper ones, but
they are not required for this paper. Unlessone = dia, thefrk operation in definition
13 requires an infinite set of elements because of the injectivity. It should be noted that
frk is not associative, thus usuallyfrk(frk(x, y), z)6= frk(x, frk(y, z)). With respect
to active domains, thefrk operation in this paper has the purpose of assigning unique
identifiers.

Definition 14 A context-FRA based onA is a context-RA based onA with a FRA
on ACT which fulfills the following: withfrk : U1 × U2 → U3: if U1 = U2 = ACT ⇒
U3 = ODD ∪ EVN and if U1 = ODD or U2 = ODD ⇒ U3 = ODD. For x, y ∈ EVN:
frk(x, y) 6= x and frk(x, y) 6= y. The following restrictions toACT are defined:
I4|EVN J := {(frk(x, y), z) | (x, z) ∈ I; (y, z) ∈ J ; frk(x, y) ∈ EVN} and lft :=
diaA4|EVN oneA andrgt := oneA4|EVN diaA andprt := rgt t lft t (rgt � lft) t
(lft � rgt) t (rgt � rgt) t (lft � lft)... andend := dia(prt↑) ∩ dia(prt→).

It can be shown that F1 and F3 (but not F2) from definition 12 still hold for4|EVN.
lft andrgt are projections becauselft = {(frk(x, y), x)| frk(x, y) ∈ EVN}. Accord-
ing to F1, all of the information about4|EVN is contained inlft andrgt. The matrices
lft andrgt are fixed at any point in time according toEVN. Calculations with4|EVN are
thus reduced to look-ups inlft andrgt together with ordinary RA operations. It should
be noted that to calculate the parts,prt requires some sort of transitive closure (thus is
not strictly an RA operation). Frias et al. (2004) do not discuss the need for transitive
closure, but it is not known to us whether they do not require it or whether they have
overlooked the problem.

5.3 Relational Schemata using Fork Algebra

Using the fork algebraic extensions from the previous section, it is now possible to
define a complete relational schema for an object-relational database that contains both



simple and composite tables with all their values. Simple tables are traditionally called
“entity tables”. They collect instances, such as “employee” or “project”. Instances (or
rows) in such tables are usually identified by a single key, which is a column of the
table and contains unique values, such as “employee number” or “project number”.
Composite tables are traditionally called “relations”, which are built using the keys from
simple tables as “foreign keys”. For example, a relation “work” can be built from tables
“employee” and “project” using the keys “employee number” and “project number”.
Such a table represents a database relation between employees and projects.

Definition 15 A complete relational schema based onACT is a relational schema
based onACT with a context-FRA based onA and with sets:Keys ⊆ Attr; Nkey :=
Attr \ Keys; Simp ⊆ Inst with Simp := {s ∈ Inst|¬∃y : s prt y} ∪ {s ∈ ACT | ∃x :
x end s} andComp := Inst \ Simp; so that simple instances have at most one key:
for s ∈ Simp, k1, k2 ∈ Keys: sIisbak1, sIisbak2 ⇒ k1 = k2 and the keys of com-
posite instances correspond exactly to their fork algebraic end parts: forc ∈ Comp:
∃s : c end s⇐⇒ ∃k∈Keys : c end�Iisba k; for c ∈ Comp, k ∈ Keys: c end�Iisba k⇐⇒
cIisbak and|set((c � end)↑))| = |setKeys((c � Iisba)↑)|.

Definition 15 does not allow for the same attribute to be used more than once as a
foreign key. This is only a problem if these attributes are in a many-to-many relation
because otherwise the relation does not require a separate table. But even then it is pos-
sible to generate a generic key attribute using identifiers and treating the other attributes
as non-key attributes.

Remark 1 Definition 15 translates the database notion that instances are uniquely
identified by keys into a fork algebraic part-whole relationship! This is significant be-
cause in RLA, keys form just another set and instance pairs are not structurally different
from value pairs. But in the fork algebraic formalisation, the special nature of keys is
structurally represented.

The conditions in definition 15 can also be expressed relationally: simple instances
do not have parts:dia(Simp)�prt = nul. End parts are simple:dia(Simp) ⊇ dia(end↑)
orend = prt � dia(Simp). Simple instances have exactly one key:redSimp,Keys(Iisba) is
a permutation matrix4. Keys of composite instances correspond to the fork algebraic end
parts of the instances: for eachc ∈ Comp: diaset((c � end)↑)�Iisba�diaKeys((c�Iisba)↑)
is a permutation matrix.

So far, instances can be constructed and attributes can be assigned to instances –
but only in a binary manner showing which instance has which attribute but not which
value belongs to an instance with respect to an attribute. In the following definition,
Vals stands for instance-value pairs. Attribute values are often drawn from potentially
infinite domains (such as the set of real numbers). This is why attribute values do not
usually correspond to keys. According to Definition 15 simple instances do not need
to have a key. Simple instances without keys are attribute values. But not all attribute
values need to be listed as instances in a complete relational schema.

Definition 16 A value assignment contextfor a complete relational schema based
on ACT is a formal context(Vals, Nkey, Ivals) whereVals ⊆ ACT with dia(Vals) ⊆
dia(lft→) so that((dia(Vals) � lft)↑) ⊆ dia(Inst) andIvals is a binary matrix so

4 A binary relationI represents an exact correspondence, if it contains exactly one 1 in each row
and column (i.e.,I ◦ Id = dia). Such a matrix is called a permutation matrix.



that for each attributea: the matrixdia((Ivals � a)→) � lft = dia(set(a′)) � lft has
at most 1 cross per column.

The conditions in definition 16 ensure that elements ofVals are pairs where the left
element is an instance. The instance-value relation for each attribute can be retrieved via
lftd � dia(set(a′)) � rgt. The last condition in definition 16 ensures that each instance
has exactly one value for each attribute. In relational database terms this means that
the tables are in first normalform. Definition 16 does not only require this for each
single table, but instead across the whole database. If an instance has a value for an
attribute, then it has the same value in all tables in which this instance and this attribute
occur. This means that a multiple inheritance anomaly (Priss, 2005) is avoided. From an
implementation viewpoint, this can always be achieved by renaming attributes if these
attributes have table-specific values.

The construction in definition 16 is in principle similar to the treatment of “many-
valued contexts” in traditional FCA (Ganter & Wille, 1999) and to Wille’s (2002) power
context families. The difference is, however, that in definition 16 a single formal con-
text is used for all attributes of all database tables of an application. The information
about which instances and values belong to which database tables is coded into the fork
algebraic part-whole structure of the elements inVals. The fork algebraic construction
also uses a more restrictive set of operations. Instead of the use of a Cartesian Product,
pairs of instances or of instances and values are added tolft andrgt on an as-needed
basis. Another restriction (but not limitation) is that n-ary relations are built stepwise
from binary relations.

6 Conclusion

This paper describes a formalisation of object-relational databases using RA and fork
algebra. An advantage for this approach is that in contrast to traditional RLA, the math-
ematisation is mainly based on binary relations and thus closer to FCA, which provides
easy access to visualisations in form of FCA line diagrams. Compared to RLA, the ba-
sis of the algebraic operations that are required is quite similar. Both RA and RLA use
union and complement. The RLA operations of projection and selection are achieved in
RA by using composition, dual and a selection via composition withdia(). The RLA
operation of cross (or Cartesian) product corresponds to fork algebraic constructions
together with RA operations that allow to convert between sets and matrices. The sim-
ilarities and differences between the two approaches provide insights into the structure
of relational databases. It is hoped that in the future an implementation can be developed
that explores practical applications of the RA/fork algebraic structures.
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