
Lattice-based Information Retrieval

Uta Priss

School of Library and Information Science, Indiana University Bloomington,
upriss@indiana.edu

Abstract. A lattice-based model for information retrieval has been suggested in
the 1960’s but has been seen as a theoretical possibility hard to practically apply
ever since. This paper attempts to revive the lattice model and demonstrate its
applicability in an information retrieval system, FaIR, that incorporates a graph-
ical representation of a faceted thesaurus. It shows how Boolean queries can be
lattice-theoretically related to the concepts of the thesaurus and visualized within
the thesaurus display. An advantage of FaIR is that it allows for a high level of
transparency of the system which can be controlled by the user.

1 Introduction

The prevailing model currently used in information retrieval systems is the vector space
model. Although it has proven very useful in many applications, it is limited because
of the computational complexity of manipulations in high dimensional vector spaces
and the problem that only projections in two-, or possibly three-dimensional spaces
can be visually represented. In the 1960’s other retrieval models were considered be-
sides the vector space model, such as lattice representations, topological spaces, metric
spaces and graph models (Salton, 1968) but they were seen as theoretical possibilities
that were difficult to practically implement. This paper revisits one of these models,
the lattice model, which has been used in many applications within the framework of
a theory called formal concept analysis (Ganter & Wille, 1999) but has not yet been
widely applied to information retrieval. The retrieval system, FaIR, described in this
paper demonstrates that with modern computational technology, especially graphical
representations, and some advancement of the methodology the lattice model is fea-
sible. The main result of this paper is the translation of Boolean queries into lattice
representations. This paper does not make any claims as to whether the lattice model
is superior to any other models but simply shows that the lattice model is feasible. The
main purpose of exploring lattice-based approaches is to increase transparency and user
control over an information retrieval system that is not a ”black box” to the user.

1.1 Lattices in information retrieval

A first detailed formalization of how to use lattices for information retrieval appears
to date back to Mooers (1958). His approach is contained in Salton’s (1968) famous
book and originally received some attention (Soergel, 1967) but has not been further
elaborated in the mainstream information retrieval community. Most of the few, current
applications of lattices in information retrieval are based on formal concept analysis



(Ganter & Wille, 1999), which was invented in the early 1980’s and relates lattices to
object-attribute matrices or document-term matrices in information retrieval. Formal
concept analysis applications to information retrieval are similar to Mooers’s ideas but
have been developed independently.

Lattices are used by Fairthorne (1956), Mooers (1958), Soergel (1967), and Salton
(1968) to derive a mathematical formalization of a query (or request) language. If a
language consists of a set of primitive terms with Boolean AND as the sole operator,
then the resulting set of terms can be represented as a Boolean lattice. For example,
”A AND B AND C” is superordinate to ”A AND B”, ”A AND C”, ”B AND C” in a
Boolean lattice. If Boolean OR is added, the possible combinations of terms with AND
and OR form what is called a free distributive lattice. The number of elements in such a
lattice with � terms, AND and OR grows faster than exponentially: a lattice of 3 terms
has 20 elements, a lattice of 6 terms has almost 8 million elements, a lattice of 8 terms
has 5.6 �

�������
elements (Sloane, 1999). Adding Boolean NOT complicates this even

more.

It can be concluded that, although theoretical results concerning query languages
and lattices may be interesting, it is not practical to produce a graphical representation
of all possible query terms in a lattice. But it should not be concluded that other lattice
representations cannot be useful. As an example, a recently developed system, SWEAR
(Davis & McKim, 1999), uses lattices implicitly to improve the ranking of result sets.
Text-based representations of ranked result sets of Boolean queries are often ordered
based on the number of requested terms that appear in the documents. That implies
that all nodes of the Boolean lattice that are at the same level are lumped into one
rank. SWEAR changes that by superimposing a linear order on the Boolean lattice that
assigns a distinct rank to every node based on user-selected term weights.

1.2 Lattices as conceptual hierarchies or thesauri

Although lattices may not be useful for representing all possibilities of Boolean query
terms, they are appealing as a means of representing conceptual hierarchies used in in-
formation retrieval systems because of some formal lattice properties. The Galois con-
nection of a lattice applied to information retrieval represents an inverse relationship
between document sets and query terms: if more query terms are selected, which means
the request is more precise, fewer documents are retrieved, and vice versa. This rela-
tionship holds in general for conceptual hierarchies: more general concepts have fewer
defining attributes in their intension but more objects in their extension, and vice versa.
Therefore lattices have been used successfully for representing conceptual hierarchies
in formal concept analysis and for type hierarchies in object-oriented modeling. Besides
the Galois connection, lattices are superior to tree hierarchies and poly-hierarchies (or
ordered sets), which can both be embedded into lattices, because lattices have the prop-
erty that for every set of elements there exists a unique lowest upper bound (join) and a
unique greatest lower bound (meet). This property is useful in many applications.

Formal concept analysis (Ganter & Wille, 1999) represents conceptual hierarchies
as mathematical lattices. Each concept has a set of objects as its unique extension and



a set of attributes or characteristics as its unique intension. In information retrieval ap-
plications, the documents serve as formal objects and the index terms (descriptors, the-
saurus terms) serve as formal attributes (compare, for example, Kollewe et al. (1995)).
A document-term matrix can equivalently be transformed into a concept lattice. Figure
1 shows an example. In the lattice diagram, each document is described by exactly those
terms that are attached to nodes that are above the document node. Each term belongs
to exactly those documents that are attached to nodes below the term node. One prob-
lem with this approach is that concept lattices can become fairly large and difficult to
generate automatically from the data. Carpineto & Romano (1995) suggest therefore
approaches to derive parts of lattices and to use fish-eye view techniques. Godin et al.
(1993) represent only the direct neighbors of nodes in a textual interface. The software
TOSCANA (Kollewe et al., 1995) facilitates the decomposition of a lattice into smaller
lattices that are nested. Users can browse through the lattices by zooming between more
abstract and more detailed views.

document 1
document 2
document 3
document 4

Java C++ CGI programming language

X X

X
X

X
X

programming language

document 1

document 2

CGI

document 4

document 3

Java

C++

Fig. 1. A document-term matrix and its concept lattice

Most of the applications of lattice theory to information retrieval are data-driven,
that is the lattices are constructed from the actual occurrence of documents and terms
and not from conceptual relationships among terms that are inherent to the domain
knowledge. Therefore, in principle, these approaches face a similar problem to that
of the lattice formalisms of the 1960’s: all possible combinations can occur and the
lattices can become large and complex, although Godin et al. (1993) estimate that the
potential maximum complexity is not reached in real applications. Opposed to data-
driven approaches are facet-based approaches, which analyze and restrict the possible
keyword combinations for each facet; thesaurus-based approaches, which utilize lattices



to model the conceptual hierarchy among the concepts; and faceted thesaurus-based
approaches, such as the one presented in this paper, which do both.

As an example of a facet-based approach, a pilot study (Rock & Wille, 2000) com-
piled index terms of a small library with 2000 books into scales, which loosely corre-
spond to facets. The scales are represented as lattices that contain five to ten index terms
and all their combinations that can occur among the documents. The scales were manu-
ally generated over a period of several months. Using TOSCANA users can browse and
navigate through the scales.

Several applications of formal concept analysis to information retrieval utilize the-
sauri but not faceted thesauri. Priss (1997) discusses several formal methods of com-
bining a document-term matrix with a thesaurus hierarchy. Other approaches (Skorsky
(1997) and Groh et al. (1998)) select a subset of a thesaurus hierarchy and generate all
possible term combinations of that subset. This produces conceptual structures that can
accommodate any document of that domain. But since not all possible combinations ac-
tually occur, the approach creates some redundancy. Furthermore, the thesaurus subsets
are not usually facets (i.e. conceptually complete and independent). Groh et al. (1998)
present a sophisticated method of combining several subsets of a thesaurus hierarchy
into one scale. Since the thesaurus is not faceted, two selected subsets of the thesaurus
can conceptually overlap. A combination of subsets has therefore to include new terms
that correspond to otherwise missing joins of terms from different subsets. The resulting
mathematical structure and graphical representation is fairly complicated. If a faceted
thesaurus was used instead, the problem would not arise in the first place because facets
are by definition complete and independent (compare Priss & Jacob (1998)).

A further lattice-based approach should be mentioned: Pedersen (1993) describes a
”relationship lattice diagram” that consists of a lattice-based thesaurus hierarchy with
additional relations. The approach is similar to formal concept analysis but seems to
have been developed independently. The resulting diagrams are very interesting but
apparently the user interface is still text-based. Furthermore, the embedded lattice is
not faceted, the structure is mainly a tree-hierarchy not a poly-hierarchy, and there is no
formal explanation of the query process.

All the current lattice-based retrieval models result in browsing interfaces that rely
to a certain degree on manually built structures, in contrast to search interfaces based
on automatic classification or clustering. Automated retrieval mechanisms as employed
in vector space retrieval systems can be applied to lattices if the notions of similarity
measure and distance are transferred to lattices. Lengnink (2000) proposes methods of
achieving such measures but so far they have not been applied to information retrieval.

2 The information retrieval system FaIR

2.1 An overview of FaIR and its application domain

FaIR is a lattice-based faceted information retrieval system. Before the elements of the
system are described, it should be noted that the examples in the following sections



are taken from an interface prototype of the Indiana University UITS knowledge base
KB (UITS, 1999). The KB is an on-line collection of about 5000 FAQ documents of
computing questions. Every document covers one question, such as ”How do I con-
vert between Unix and DOS text files?” with brief explanations and cross-references
to related documents. The KB has two interfaces: a hierarchical menu interface and a
Boolean search interface. The prototype described in this paper is based on the search
interface. The KB was chosen for this study because its document collection is restricted
to a well defined domain and fairly homogeneous. The full-text of the documents is au-
tomatically indexed by the KB and the query results are ranked. Therefore it is assumed
that problems with automatic indexing procedures, word ambiguities and synonyms
may hinder some searches. The system, FaIR, described in this paper is currently under
development. Once it is established a usability study will be performed to compare the
Boolean search interface with the new lattice-based retrieval interface.

FaIR consists of a faceted thesaurus
�����

, a set � of concepts that are generated
from the thesaurus and a query language � that is created from concepts and Boolean
operators and that is mapped onto sets of concepts using a mapping �	�
������ where
�� denotes the power set of � . Figure 2 provides an overview of FaIR’s components
and mappings, which are formally described in the rest of this paper. Documents are
represented via a set � of document descriptions that are mapped onto the concepts by
a mapping ��������� . The query language of users is denoted by � and is mapped
via ��������� onto the query language � . The mnemonic for the mappings � , � , � is
that � is part of the indexing process, � is part of the retrieval process and � represents
the logic of the system. The distinction between query set, document descriptions and
thesaurus terms (or concepts) and the mappings in between is based on Salton’s (1968)
ideas and has been used in many systems since then. On the other hand, FaIR is distin-
guished from other systems by its use of a lattice-based faceted thesaurus to generate the
concepts and the query language. The graphical representation of FaIR is influenced by
TOSCANA (Kollewe et al., 1995), but TOSCANA has not been used for faceted the-
sauri so far and its display mechanism is different. Therefore, to our knowledge the
combination of a lattice-based faceted thesaurus with Boolean queries as described in
this paper is a new approach to visualizing information retrieval.

descriptors language

faceted thesaurus

document concepts query language user query

Q
RL

UD C/PC

T/F

I

Fig. 2. The elements of FaIR



2.2 Mapping document descriptors onto thesaurus concepts

The faceted thesaurus in FaIR consists of a set
�

of terms that are partitioned into a
set
�

of facets which are lattices. Figure 3 shows an example of two facets. In the left
lattice, ”multi-purpose programming language” and ”WWW programming language”
have ”programming language” as join and ”Java” as meet. The bottom nodes of the
lattices, the meet of all terms in the lattices, are omitted because they are usually mean-
ingless. Every node in a lattice corresponds to a term, which can be a word or a phrase.
For single facets, every term (or node) also corresponds to a concept. Compare Priss &
Jacob (1999) for further details on the faceted thesaurus formalism used in FaIR.

document

JavaC++ CGI

progr. lang. language

programming language

introductory
document

level of difficulty

Javascript

WWW programmingmulti−purpose

non−introductory

Fig. 3. Two thesaurus facets

For indexing documents, terms from different facets can be combined, such as ”in-
troductory document” and ”Java”. This term composition, which is similar to ”terms
with links” (Soergel, 1967), leads to the formation of complex concepts. The set �
of concepts consists of simple concepts (single terms from single facets) and complex
concepts (term compositions of terms from different facets). Terms within one facet
cannot be combined to form concepts because it is assumed that every facet is con-
ceptually complete which means that all necessary combinations are enumerated in the
facet. This is not a limitation because facets are restricted to a single viewpoint and are
usually small and therefore easy to complete. Ideally the documents are indexed using
the concepts of the thesaurus, which means � � � � � is a one-to-one mapping. It
should be noted that this does not mean that documents are indexed by only one term
per document but instead that they are indexed by as many terms as needed but at most
one term per facet. If the documents are indexed using a different controlled vocabu-
lary, � is a many-to-one mapping and is implemented as a database table that assigns
a concept for each document descriptor. If the documents are indexed without a con-
trolled vocabulary or the vocabulary is unknown before retrieving the documents, such
as for documents retrieved from the web, � is implemented as a rule set that maps the
document descriptors to concepts based on heuristics and/or natural language process-
ing techniques. The rule set that is chosen for � can vary among applications but it is
important that it corresponds to � because the performance of the system depends on
the appropriate choice of these two mappings.



level of difficulty

multi−purpose
progr. lang.

introductory
document

non−introductory
document

IUPUIIUKIUB

IU only

everywhere

programming language

WWW programming language

441121 7

JavaC++ CGI Javascript

134

10

472

0

?

?

? ??

Fig. 4. Thesaurus facets with assigned documents

Figure 4 shows an example of documents of the UITS knowledge base mapped to
concepts. The numbers indicate how many documents belong to each concept. A ques-
tion mark indicates that the number of documents on the concept cannot be determined
because of limitations of the current KB interface or that the number of documents is
very large (larger than 1000). The facet ”location” (”everywhere” etc) corresponds to
a feature of the current KB interface: for every document it is determined whether it is
relevant for a general computer community (everywhere) or only for Indiana University
(IU only) or for a specific campus (IUB, IUK, IUPUI). This information can only be
obtained in combination with a specific topic not with an empty query string hence the
question marks. The following rules are used for the mapping � in this application:

– The facets are processed separately.
– A list of synonyms of the terms has been compiled. For the first facet (programming

language), only the listed terms are used. For the second facet (level of difficulty),
a phrase ”What is” or ”What are” is used as synonym to ”introductory document”
because introductory documents in the KB commonly have titles such as ”What is
Java”. For the third facet (location), no synonyms are compiled, instead the ”ad-
vanced search feature” of the current KB interface is used.

– Documents that contain only one of the terms (or its synonyms) of a facet are
mapped to the corresponding concept. This is implemented as a Boolean query
for every bottom level concept, such as ”CGI AND NOT (Java OR Javascript OR
C++)”.)

– Documents that contain several terms of a facet are mapped to the join of the con-
cepts with the exception that if a document contains both a specific and a general



term, the general term is ignored (see below). This is implemented as Boolean
queries for the higher level concepts of each facet, such as ”((CGI AND Javascript)
OR (Java AND CGI) OR (Java AND Javascript) OR ”WWW programming lan-
guage”) AND NOT C++”.)

As an example of the rules, a document on CGI and Javascript (only) is assigned to
”WWW programming language” which is the join of ”CGI” and ”Javascript”. A docu-
ment on Javascript and Java is also assigned to ”WWW programming language”. The
facets of the thesaurus need to be designed carefully so that not too many documents
with different descriptors are assigned to the same concept. With respect to the KB,
it is not useful to have a concept for the combination of only Java and Javascript un-
der ”WWW programming language”. But for other applications such a concept might
be useful. A document that contains ”programming language” and ”Java” but no other
terms from the facet is mapped to ”Java”. The more general term ”programming lan-
guage” is ignored because the document descriptors were derived by full text indexing
and many documents start with sentences such as ”Java is a programming language”.
Therefore, in this application the more general term often does not add as much infor-
mation to the document content as the more specific term. In a different application, the
rules for mapping descriptors to concepts might be different. For example, manually
indexing a document with ”Java” and ”programming language” could indicate that the
document is about programming languages in general and uses Java only as an exam-
ple. This shows that the rules for mapping descriptors to concepts should be formulated
only after a careful analysis of the indexing process of the domain.

In this application the documents are assigned to concepts by executing Boolean
queries in the current KB interface. A more efficient implementation would pre-process
the facets by mapping all documents to the appropriate concepts and then storing doc-
ument identifiers and concept identifiers in a relational database. The actual numbers
would then be produced by issuing an SQL query for each concept. The document
counts are only used as an example. Instead of the document numbers, document titles
can be displayed. Or the document titles can be retrieved by clicking on the numbers.

Technically every document is mapped onto a single concept not only concerning
one facet but concerning all facets. If a document has several descriptors, the descriptors
that belong to one facet are mapped onto a single concept in that facet. The concepts of
different facets are combined in complex concepts. It follows that although each term
belongs to exactly one facet, document descriptors belong to several facets if they rep-
resent complex concepts. In that case terms from different facets can have the same
synonym. Homographic descriptors must be disambiguated to identify the appropriate
facets. This can be done by using natural language processing software or by employing
the thesaurus itself for disambiguation by identifying the higher level facets to which
a document is mapped. For example, the term ”crane” in a descriptor set

�
crane, mi-

gration, habitat � would point to a different higher level facet than the same term in a
set

�
crane, truck, production � . But word sense disambiguation is a difficult task for

any retrieval system and shall not be further discussed in this paper. Concerning the
KB, highly ambiguous terms of the domain are stopwords of the system and therefore



ignored in documents and user queries. If a single document, such as a conference pro-
ceedings volume, covers a variety of topics and mapping it onto a single concept in
every facet to which it belongs is not appropriate because the document covers a variety
of terms from single facets, the document should be represented as a set of documents
which should be indexed separately. But again that is a strategy that applies to any
information retrieval system.

2.3 The query language

The query language � of FaIR is defined as the set � of concepts together with the
Boolean operators AND, OR and NOT, i.e. � � � � ��� AND, OR, NOT � . Elements
of � are called query terms. Each query term is mapped onto a set of concepts via
� � � � �� as described below. The system’s internal query language � is to be
distinguished from the query language � of the user because users may not know the
exact vocabulary of the system. The mapping � � � � � is based on lookup tables
for synonyms and possibly natural language software for word sense disambiguation.
It faces therefore problems similar to those of the mapping � because in each case
an uncontrolled vocabulary is mapped onto a controlled vocabulary. Since FaIR has a
graphical interface, users can browse through the list of facets and search for specific
terms of � . If a user chooses the search interface, the computer checks if the query
term exists and is unique. For ambiguous terms, that is terms that are stored in the
system with parenthetical information, such as ”crane (animal)” and ”crane (device)”,
the computer inquires which one was meant by the user. If the query term does not exist,
the computer suggests near matches, such as terms that are alphabetically close. With
the browsing interface, users have direct access to � . In that case, if it is ignored that
users may not have the same understanding of the meaning of terms in � as is intended
by the designers of the system, the languages � and � can be assumed to be equivalent
in FaIR.

2.4 Intra-facet searches

The mapping � � ��� �� must correspond to � . Since, in this application, � maps
documents with several descriptors to their joins, a search for a single term must also
retrieve more general terms. The following applies to � in this application: using So-
ergel’s (1967) terminology, ”exclusive” and ”inclusive” searches are distinguished. An
exclusive search retrieves an exact concept. For example, a search for ”Java” retrieves
only documents on Java alone but not documents on ”Java and other programming lan-
guages”. An inclusive search includes more specific and more general terms because
a document on ”programming languages in general” might also be relevant for ”Java”.
Formally, an exclusive search for a simple concept retrieves only the documents that are
directly attached to that node, or to the concept’s nodes in different facets in the case
of a complex concept. An inclusive search retrieves all documents that are attached to
the concept directly and to nodes below and above the concept. In lattice terminology,
an inclusive search retrieves the union of the filter (the nodes above) and the ideal (the
nodes below) of a concept. The first example in Figure 5 shows searches for ”multi-
purpose programming language”. The dashed line indicates the exclusive search while



the inclusive search is the area within the solid line curve. In FaIR’s interface the re-
sults are highlighted using different colors. Users do not have to type queries but can
construct them by clicking and highlighting.

The Boolean AND as exclusive search in a single facet retrieves meet and join of
the terms. The inclusive Boolean AND in a single facet is represented by retrieving
the documents of single inclusive searches for every term and intersecting the resulting
sets. The second example in Figure 5 shows a search with Boolean AND. In this case
exclusive and inclusive search are identical because there are no further concepts above
the join and below the meet of the terms. In general, an inclusive search retrieves the
filter of the join, the ideal of the meet and in the case of comparable terms the interval
in between. It is a feature of FaIR that general and specific terms are included in the
Boolean AND because the mapping � assigns, for example, documents on all program-
ming languages to the top node. Therefore documents on multi-purpose and WWW
programming languages can be found at the top node and at the ”Java” node depending
on whether they are general or specialized documents. In other applications, it may be
appropriate to use a mapping � that maps Boolean AND only to the meet and (its ideal)
but not to the join. These are design decision for the mapping � .

Boolean OR is represented as a union of documents retrieved by searching for the
terms separately (compare Figure 5 for an example). In this application, the inclusive
OR is represented as the union of inclusive single searches. The exclusive OR restricts
that union to elements between the meet and join. The inclusive OR is probably not
very useful because it retrieves too many documents. The exclusive OR on the other
hand, shows everything that is related to either one of the requested terms but is not too
general or too specific.

Boolean NOT corresponds to the set theoretical difference. Exclusive NOT excludes
all documents that are in the ideal of the term to be excluded; inclusive NOT excludes
documents in filter and ideal of the term.

2.5 Inter-facet searches

So far the Boolean operators have only been applied to single facets. If several facets
are included in one query, it does not seem sensible to use OR between facets. For ex-
ample, while a query for ”Java AND introductory document” is reasonable, a query for
”Java OR introductory document” does not correspond to a common sense logical con-
struction because natural language ”or” assumes a shared attribute between the terms
such as in ”green or blue” which share ”color”. Sensibly applied Boolean OR usually
corresponds to synonyms, such as in ”car OR automobile OR auto”, which belong to
a single facet. Therefore in this application, only Boolean AND is allowed between
different facets. In inter-facet searches the difference between exclusive and inclusive
does not apply to the search as a whole. Boolean NOT is also restricted to single facets
because otherwise inter-facet OR’s might result according to de Morgan’s laws. For
example, ”Java AND NOT ’introductory document’ AND (everywhere OR IUB)” is
an acceptable query; ”NOT (Java AND ’introductory document’)” which is equivalent



multi−purpose
progr. lang.

programming language

WWW programming language

JavaC++ CGI Javascript

multi−purpose
progr. lang.

programming language

WWW programming language

JavaC++ CGI Javascript

multi−purpose
progr. lang.

programming language

WWW programming language

JavaC++ CGI Javascript

"multi−purpose
programming language"

Java OR Javascript

"multi−purpose
programming language"
AND "WWW programming
language" 

Query 1

Query 2

Query 3

Fig. 5. Several queries in a single facet



to ”NOT Java OR NOT ’introductory document’” is not an acceptable query. As men-
tioned before, users do not have to worry about these details because they formulate
queries by selecting facets and highlighting concepts in these facets.

Figures 6 and 7 demonstrate queries using inter-facet AND. In Figure 6, a user has
selected three facets from the KB interface. All terms in all facets are highlighted. This
corresponds to inclusive searches for the top nodes of the facets combined by inter-facet
AND. The inter-facet AND results in the intersection of the documents of the facets.
That means that only the documents that belong to all three facets are counted. In Figure
7, documents on programming languages that are relevant ”everywhere” are selected.
Only 65 documents fulfill that condition. The numbers in all three facets are reduced
accordingly.

3 Conclusion

An advantage of FaIR is that queries retrieve sets of concepts within the context of
conceptual relations. This is in contrast to traditional retrieval systems which show no
internal structure of large retrieval sets (except of ranking mechanisms whose function-
ality is often not clear to the users) or which in the case of an empty retrieval set give no
indication as to how the query should be changed to be successful. If too many docu-
ments are attached to one node in the retrieval display, users can select additional facets
to partition the same set into smaller sets. If no documents are attached to one node,
users can identify neighbor nodes that have documents attached. By highlighting cer-
tain parts of facets, users can perceive the impact of that selection on related facets and
therefore interactively modify the retrieval set until it has an appropriate size. At ev-
ery point, users have complete control over the system and complete information about
the selected facets. Once the result set is small enough, users can click on the docu-
ment numbers to display document titles, abstracts or the full text of the documents if
available.

FaIR’s design is highly modular: the faceted thesaurus is modular in that the facets
are conceptually complete and independent of each other. Single facets can be added
to or deleted from the thesaurus after an automatic consistency check that assures that
terms are not duplicated, links in the facet hierarchy are not missing, and the thesaurus
relations are not circular (compare Priss & Jacob (1999)). The thesaurus, set of docu-
ment descriptors and user query language are connected via mappings. All three can
be fairly independent of each other although, if they are totally independent, the sys-
tem’s efficiency relies heavily on the quality of the mappings. Any faceted thesaurus
can be incorporated into FaIR. It follows that users can maintain their own thesaurus
as a means of information filtering. In that case users are completely familiar with the
query language, i.e. � � � . The only component that might not be totally under user
control is the mapping � , although advanced users could change the rules for � manu-
ally. The ”black-box phenomenon” of information retrieval systems is thus reduced to
natural language processing techniques that can be tested by the user. Users can share
their faceted thesaurus or parts of it with other users. They can apply FaIR as a front
end to other retrieval systems. It is not suggested that patrons of a library, for exam-
ple, would be able to use FaIR without some training. The current target user group is



total: 110

level of difficulty

multi−purpose
progr. lang.

introductory
document

non−introductory
document

IUPUIIUKIUB

IU only

everywhere

programming language

WWW programming language

441121

JavaC++ CGI Javascript

134

10

25 85

7

80

65

22

15

0

Fig. 6. The query ”’programming language’ (incl) AND ’everywhere’ (incl) AND ’level of diffi-
culty’ (incl)”



information professionals that perform queries for patrons and researchers that need to
retrieve information concerning a specific domain with high accuracy and convenience
and do not mind the effort of learning to use an information retrieval tool.

level of difficulty

multi−purpose
progr. lang.

introductory
document

non−introductory
document

IUPUIIUKIUB

IU only

everywhere

programming language

WWW programming language

1816

JavaC++ CGI Javascript

101

7

22 43

3

00

65

0

0

10

0

total: 65

Fig. 7. The query ”’programming language’ (incl) AND ’everywhere’ (excl) AND ’level of diffi-
culty’ (incl)”

Acknowledgments

I wish to thank Elin Jacob, Charles Davis, Bernhard Ganter, Jonathan Bolte and the
UITS Knowledge Base Team and two anonymous reviewers for hints and discussions
of some aspects of this paper.

References

Carpineto, C., & Romano, G. (1995). Automatic construction of navigable concept
networks characterizing text databases. In M. Gori & G. Soda (Eds.), Topics in
Artificial Intelligence. LNAI 992-Springer, pp. 67-78.
Davis, Charles, & McKim, Geoffrey (1999). Systematic Weighting and Ranking:
Cutting the Gordian Knot. Journal of the American Society for Information Sci-
ence, 50, 626-628.



Fairthorne, R. A. (1956). The Patterns of Retrieval. American Documentation, 7,
65-70.
Godin, R., Missaoui, R., & April, Alain (1993). Experimental comparison of nav-
igation in a Galois lattice with conventional information retrieval methods. Inter-
national Journal of Man-Machine Studies, 38, 747-767.
Ganter, Bernhard, & Wille, Rudolf (1999). Formal Concept Analysis. Mathematical
Foundations. Berlin-Heidelberg-New York: Springer.
Groh, B., Strahringer, S., & Wille, R. (1998). TOSCANA-Systems Based on The-
sauri. In M. L. Mugnier, & M. Chein (Eds.), Conceptual structures: theory, tools
and applications. LNAI 1453. Springer, pp. 127-138.
UITS (1999). Indiana University Knowledge Base [On-line]. Available:
http://kb.indiana.edu/info/infopage.html.
Kollewe, W.; Sander, C.; Schmiede, R., & Wille, R. (1995). TOSCANA als Instru-
ment der bibliothekarischen Sacherschließung. In H. Havekost, & H.-J. Wätjen
(Eds.), Aufbau und Erschließung begrifflicher Datenbanken. Oldenburg: BIS-Verlag,
pp. 95-114.
Lengnink, K. (2000). Ähnlichkeit als Distanz in Begriffsverbänden. In G. Stumme,
& R. Wille (Eds.), Begriffliche Wissensverarbeitung: Methoden und Anwendun-
gen. Berlin-Heidelberg: Springer.
Mooers, C. N. (1958). A mathematical theory of the use of language symbols in
retrieval. In Proc. Int. Conf. Scientific Information. Washington D.C.
Pedersen, Gert Schmeltz (1993). A Browser for Bibliographic Information Re-
trieval on an Application of Lattice Theory. ACM-SIGIR’93, Pittsburgh, PA, pp.
270-279.
Priss, Uta (1997). A Graphical Interface for Document Retrieval Based on Formal
Concept Analysis. In E. Santos (Ed.), Proceedings of the 8th Midwest Artificial
Intelligence and Cognitive Science Conference. AAAI Technical Report CF-97-01.
Priss, Uta, & Jacob, Elin (1998). A Graphical Interface for Faceted Thesaurus De-
sign. In E. Jacob (Ed.), Proceedings of the 9th ASIS SIG/CR Classification Re-
search Workshop, pp. 107-118.
Priss, Uta, & Jacob, Elin (1999). Utilizing Faceted Structures for Information Sys-
tems Design. Proceedings of the 62st Annual Meeting of ASIS, 203-212.
Rock, T., & Wille, R. (2000). Ein TOSCANA-Erkundungssystem zur Literatur-
suche. In G. Stumme, & R. Wille (Eds.), Begriffliche Wissensverarbeitung. Meth-
oden und Anwendungen. Berlin-Heidelberg: Springer.
Salton, Gerard (1968). Automatic Information Organization and Retrieval. McGraw-
Hill, New York.
Skorsky, Martin (1997). Graphische Darstellung eines Thesaurus. Deutscher Doku-
mentartag, Regensburg.
Sloane, N. J. A. (1999). On-Line Encyclopedia of Integer Sequences [On-line].
Available:
http://akpublic.research.att.com/ � njas/sequences/index.html
Soergel, Dagobert (1967). Mathematical Analysis of Documentation Systems. In-
formation Storage and Retrieval, 3, pp. 129-173.


