
SQL and programming languages

SET08104 Database Systems

Copyright Napier University

Slide 1/14

Pure SQL

Pure SQL: Queries typed at an SQL prompt.

I SQL is a non-procedural language.

I SQL specifies WHAT, not HOW.
I Pure SQL is good for:

I defining database structure
I generating low-volume, ad hoc queries
I prototyping

I Sophisticated applications are often implemented by using
SQL in combination with a programming language.

Slide 2/14

Embedded SQL

I SQL can be embedded within procedural programming
languages.

I These languages include C/C++, Java, Perl, Python, and
PHP.

I Embedded SQL supports:
I Highly customised applications.
I Background applications running without user intervention.
I Combining database tools with programming tools.
I Databases on the WWW.

Slide 3/14

Two types of embedding

Low-level embedding (eg. C/C++):

I SQL and program compiled into a single executable.

I Very efficient link.

ODBC - Open Database Connectivity (eg. PHP/Java):

I SQL query sent from the program to the database as a string.

I Results returned as an array or list.
I Independence of program and database:

I Each language has one DBI (database interface) for all DBMS
types. (For example, JDBC for Java.)

I Separate database drivers (DBD) for each DBMS type.

Slide 4/14

Low-level embedding (eg. C/C++)

I Queries consist of a mixture of SQL and special commands.

I A cursor steps through the resulting rows one at a time.

For example:

EXEC SQL SELECT empname INTO :ename
FROM employee WHERE eno = :eno;

Slide 5/14

Cursors

I A pointer to the current item in a query result set.

I Starts with the first item.

I Steps through the results one at a time.

I Some cursor implementations allow to step back up as well.

Slide 6/14

ODBC database connections

I Connect to the database.

I Prepare a query (as a string).

I Execute the query.

I Fetch the results (as an array of rows).

I Finish the query (so that DB can clean up its buffers).

I Disconnect from the database.

Slide 7/14

For example: Java

I import the DBI libraries
Class.forName(”oracle.jdbc.OracleDriver”)

I connect to the database
Connection con = DriverManager.getConnection
(”jdbc:oracle:Databasename”,”myLogin”,”myPassword”);

I Execute a query
ResultSet rs = stmt.executeQuery
(”SELECT empno, surname FROM employee”);

I Cursor points to the first row
rs.next()

Slide 8/14

Fetching the result (Java)

while (rs.next()) {
int emp = rs.getInt("empno");
String surn = rs.getString("surname");
System.out.println(emp + " " + surn); }

or

while (rs.next()) {
int emp = rs.getInt(1);
String surn = rs.getString(2);
System.out.println(emp + " " + surn);}

Slide 9/14

For example: PHP

I connect to the database
$link = mysql connect(’hostname’,’uname’, ’passwd’);

I Select database
mysql select db(’test’);

I Execute a query
$result = mysql query(’select * from test’);

I Fetch the result
(See next slide)

I Finish the query
mysql free result($result);

I Disconnect the database
mysql close($link);

mysql commands might throw errors, which should be caught:
... or die(’Error message ’ . mysql error());

Slide 10/14

Fetching the result (PHP)

echo "<table>";
while ($line = mysql fetch array($result, MYSQL ASSOC)){
echo "<tr>"; echo "<td>",$line[’firstfield’],"</td>";
echo "<td>",$line[’secondfield’],"</td>";
echo "<td>",$line[’thirdfield’],"</td>";
echo "</tr>";
}
echo "</table>";

Slide 11/14

Security Warning!

I Using MySQL and PHP on the web is a potential severe
security risk.

I There is a lot of nonsense information about how to use
MySQL with PHP on the web.

I It is especially dangerous to take any user input (i.e. form
variables) and use them directly in an SQL query.

I For an experienced programmer, PHP provides a lot of support
for writing secure code (but that is beyond this lecture).

I Inexperienced programmers should not use MySQL with PHP.

Slide 12/14

Security Warning continued

This is a statement found in a PHP forum:

“At first my remote connection to Mysql did not work,
but then I discovered I only had to stop my firewall and it
worked fine.”

Slide 13/14

Security Warning continued

This is what a hacker might type into a textfield written by the
user on the previous slide:

0; SELECT * from mysql.user; - -

Slide 14/14

