
Normalisation 1

Chapter 4.1
V4.0

Copyright @ Napier University

Normalisation

• Overview
– discuss entity integrity and referential integrity
– describe functional dependency

– normalise a relation to first formal form (1NF)

– normalise a relation to second normal form (2NF)

– normalise a relation to third normal form (3NF)

What is normalisation?

• Transforming data from a “problem” into relations while
ensuring data integrity and eliminating data redundancy.
– Data integrity : data is consistent and satisfies data

constraint rules
– Data redundancy: if data can be found in two places in a

single database (direct redundancy) or calculated using
data from different parts of the database (indirect
redundancy) then redundancy exists.

• Normalisation should remove redundancy, but not at the
expense of data integrity.

Problems of redundancy

• If redundancy exists then this can cause problems
during normal database operations because:
– When data is inserted into the database, the

data must be duplicated wherever redundant
versions of that data exists.

– When data is updated, all redundant data must
be simultaneously updated to reflect that
change.

Insertion error/anomaly

Update error/anomaly

Normal forms

• The data in the database can be considered to be in one of a
number of `normal forms'. Basically the normal form of the
data indicates how much redundancy is in that data. The
normal forms have a strict ordering:
– 1st Normal Form
– 2nd Normal Form
– 3rd Normal Form
– BCNF

• There are more forms after BCNF. These are rarely utilised
in system design and are not considered further here.

1st ≤ 2nd ≤ 3rd ≤ BCNF

Integrity Constraints

• An integrity constraint is a rule that restricts the values that
may be present in the database.

• entity integrity - The rows (or tuples) in a relation represent
entities, and each one must be uniquely identified. Hence we
have the primary key that must have a unique, non-null
value for each row.

• referential integrity - This constraint involves the foreign
keys. Foreign keys tie the relations together, so it is vitally
important that the links are correct. Every foreign key must
either be null or its value must be the actual value of a key in
another relation.

What does unique mean?

Is there any redundancy allowed?

Understanding Data
• Sometimes the starting point for understanding a problem’s data

requirements is given using functional dependencies.
• A functional dependency is two lists of attributes separated by an

arrow. Values given for the LHS uniquely identifiy a single set of
values for the RHS attributes.

• Consider:
R (matric_no, firstname, surname, tutor_no, tutor_name)

• tutor_no -> tutor_name

• LHS (Left Hand Side) -> RHS (Right Hand Side)

• R (matric_no, firstname, surname, tutor_no, tutor_name)

tutor_no -> tutor_name

– A given tutor_no uniquely identifies (AKA functionally
determines) a tutor_name.

– Tutor_name is dependent on tutor_no

– An implied determinant (underlined– the primary key) is also
present:

• matric_no -> firstname, surname, tutor_no, tutor_name

Extracting understanding

• It is possible that the functional dependencies
have to be extracted by looking at real data from
the database.

• This is problematic as it is possible that the data
does not contain enough information to extract all
the dependencies, but it is a starting point.

Example

matric_no Name date_of_birth subject grade
960100 Smith, J 14/11/1977 Databases

Soft_Dev
ISDE

C
A
D

960105 White, A 10/05/1975 Soft_Dev
ISDE

B
B

960120 Moore, T 11/03/1970 Databases
Soft_Dev
Workshop

A
B
C

960145 Smith, J 09/01/1972 Databases B

960150 Black, D 21/08/1973 Databases
Soft_Dev

ISDE
Workshop

B
D
C
D

Student(matric_no, name, date_of_birth, (subject, grade))
 name, date_of_birth -> matric_no

Repeating group

Flatten table and extend primary key

matric_no name date_of_birth Subject grade

960100 Smith, J 14/11/1977 Databases C

960100 Smith, J 14/11/1977 Soft_Dev A

960100 Smith, J 14/11/1977 ISDE D

960105 White, A 10/05/1975 Soft_Dev B

960105 White, A 10/05/1975 ISDE B

960120 Moore, T 11/03/1970 Databases A

960120 Moore, T 11/03/1970 Soft_Dev B

960120 Moore, T 11/03/1970 Workshop C

960145 Smith, J 09/01/1972 Databases B

960150 Black, D 21/08/1973 Databases B

960150 Black, D 21/08/1973 Soft_Dev D

960150 Black, D 21/08/1973 ISDE C

960150 Black, D 21/08/1973 Workshop B

STUDENT #2
Redundancy

Repeating Group

• The Student table with the repeating group removed (i.e.,
flattened) can be written as:
Student(matric_no, name, date_of_birth, subject, grade)

• Although the repeating group was removed, this has
introduced redundancy. For every matric_no/subject
combination [the NEW PRIMARY KEY], the student name
and date of birth is replicated. This can lead to errors.

• Sometimes you will miss spotting the repeating group.
However, using the redundancy removal techniques of this
lecture it does not matter if you spot these issues or not, as
the end result is always a normalised set of relations.

First Normal Form

• First normal form (1NF) deals with the `shape' of the record.
• A relation is in 1NF if, and only if, it contains no repeating

attributes or groups of attributes.
• Example:

– The Student table with the repeating group is not in 1NF
– It has repeating groups -- it is an `unnormalised table'.

• To remove repeating groups, either:
– flatten the table and extend the key, or
– decompose (split) the relation- leading to First Normal

Form

Flattened table problems

• With the relation in its flattened form, strange anomalies
appear in the system. Redundant data is the main cause of
insertion, deletion, and updating anomalies.
– Insertion anomaly – subject is now in the primary key, we

cannot add a student until they have at least one subject.
Remember, no part of a primary key can be NULL.

– Update anomaly – changing the name of a student
means finding all rows of the database where that
student exists and changing each one separately.

– Deletion anomaly - deleting all Databases (subject)
information also deletes student 960145.

Decomposing the relation

• The alternative approach is to split the table into two parts, one
for the repeating groups and one of the non-repeating groups.

• the primary key from the original relation is included
in both of the new relations ! !

Record Student
matric_no subject grade

960100 Databases C

960100 Soft_Dev A

960100 ISDE D

960105 Soft_Dev B

960105 ISDE B

...

960150 Workshop B

matric_no name date_of_birth

960100 Smith,J 14/11/1977

960105 White,A 10/05/1975

960120 Moore,T 11/03/1970

960145 Smith,J 09/01/1972

960150 Black,D 21/08/1973

What is the primary key of the Record relation?

Relations

• We now have two relations, Student and Record.
– Student contains the original non-repeating groups
– Record has the original repeating groups and the

matric_no

Student (matric_no, name, date_of_birth)
Record (matric_no, subject, grade)

• This version of the relations does not have insertion,
deletion, or update anomalies.

• Without repeating groups, we say the relations are in First
Normal Form (1NF).

Second Normal Form

• A relation is in 2NF if, and only if, it is in 1NF and every non-
key attribute is fully functionally dependent on the whole key.

• Thus the relation is in 1NF with no repeating groups, and all
non-key attributes must depend on the whole key, not just
some part of it. Another way of saying this is that there must
be no partial key dependencies (PKDs).

• The problems arise when there is a compound key, e.g. the
key to the Record relation - matric_no, subject. In this case
it is possible for non-key attributes to depend on only part of
the key - i.e. on only one of the two key attributes. This is
what 2NF tries to prevent.

KeyPart1 + KeyPart2 => attribute1, attribute2, …

Example

• Consider again the Student relation from the flattened
Student #2 table:
 Student(matric_no, name, date_of_birth, subject, grade)

• There are no repeating groups, so the relation is in 1NF
• However, we have a compound primary key - so we must

check all of the non-key attributes against each part of the
key to ensure they are functionally dependent on it.
– matric_no determines name and date_of_birth, but not

grade.
– subject together with matric_no determines grade, but

not name or date_of_birth.
• So there is a problem with potential redundancies

Dependency Diagram

• A dependency diagram is used to show how non-
key attributes relate to each part or combination of
parts in the primary key.

matric_no gradesubjectdate_of_bithname

Student

Fully
Dependent

Partially
Dependent (PKD)

Key part 1 Key part 2

• So this relation is not in 2NF
– It appears to be two tables squashed into one.
– the solutions is to split the relation into component parts

(to decompose it).
1. separate out all the attributes that are solely dependent on

matric_no - put them in a new Student_details relation, with
matric_no as the primary key

2. separate out all the attributes that are solely dependent on
subject - in this case no attributes are solely dependent on
subject.

3. separate out all the attributes that are solely dependent on
matric_no + subject - put them into a separate Student
relation, keyed on matric_no + subject

Student Details

matric_no name date_of_birth

Student

matric_no subject grade

All attributes in each relation are
fully functionally dependent upon
its primary key

These relations are now in Second
Normal Form (2NF)

What is interesting is that this set of relations are the same
as the ones where we realised that there was a repeating
group.

Third Normal Form

• 3NF is an even stricter normal form and removes
virtually all the redundant data :

• A relation is in 3NF if, and only if, it is in 2NF and
there are no transitive functional dependencies

Third Normal Form

• Transitive functional dependencies arise:
– when one non-key attribute is functionally

dependent on another non-key attribute:
• FD: non-key attribute -> non-key attribute

– and when there is redundancy in the database
• By definition transitive functional dependency can

only occur if there is more than one non-key field,
so we can say that a relation in 2NF with zero or
one non-key field must automatically be in 3NF.

Key -> non-key attribute -> non-key attribute

transitivity

Example

Project_no Manager Address

Project has more than one
non-key field so we must
check for transitive
dependencies

p1 Black,B 32 High Street

p2 Smith,J 11 New Street

p3 Black,B 32 High Street

p4 Black,B 32 High Street

Key field Non-Key fields

Extract

• Address depends on the value of manager.
• From the table we can propose:

Project (project_no, manager, address)
manager -> address

• In this case address is transitively dependent on manager.
The primary key is project_no, yet the LHS and RHS (of the
dependency) have no reference to this key, and both sides
are present in the relation.

Problem

• Data redundancy arises from this situation:
– we will duplicate address if a manager is in

charge of more than one project
– this causes problems if we have to change the

address – it requires changing several entries,
and this can lead to errors.

Fix

• Eliminate the transitive functional dependency by splitting
(decomposing) the table
– create two relations - one with the transitive dependency

in it, and another for all of the remaining attributes.
– split Project into Project and Manager.

• the determinant attribute becomes the primary key in the
new relation i.e., manager becomes the primary key to the
Manager relation

• the original key is the primary key to the remaining non-
transitive attributes - in this case, project_no remains the key
to the new Projects table.

Result : 3NF
• So now we need to store

the address only once
• If we need to know a

manager's address we can
look it up in the Manager
relation

• The manager attribute is
the link between the two
tables -- in the Projects
table, manager is now a
foreign key.

• These relations are now in
third normal form.

Project Project_no Manager

p1 Black,B

p2 Smith,J

p3 Black,B

p4 Black,B

Manager Manager Address

Black,B 32 High Street

Smith,J 11 New Street

Summary: 1NF

• A relation is in 1NF if it contains no repeating groups
• To convert an unnormalised relation to 1NF either:

– Flatten the table and change the primary key, or
– DECOMPOSE the relation into smaller relations, one for

the repeating groups and one for the non-repeating
groups.

• Remember to put the primary key from the
original relation into both new relations.

• This (decompose) option is liable to give the best
results.

R(a,b,(c,d)) becomes
R(a,b)
R1(a,c,d)

Primary Key for the
whole relation

Summary: 2NF

• A relation is in 2NF if it contains no repeating groups and no
partial key functional dependencies (PKDs)
– Rule: A relation in 1NF with a single key field must

(inevitably) be in 2NF
– To convert a relation with partial functional dependencies

to 2NF, create a set of new relations (DECOMPOSE):
• One relation for the attributes that are fully dependent

upon the key.
• One relation for each part of the key that has partially

dependent attributes
R(a,b,c,d) and a->c (a PKD) becomes

R(a,b,d) and R1(a,c)

Summary: 3NF

• A relation is in 3NF if it contains no repeating
groups, no partial functional dependencies, and no
transitive functional dependencies

• To convert a relation with transitive functional
dependencies to 3NF, remove the attributes
involved in the transitive dependency and put them
in a new relation (i.e., DECOMPOSE)

3NF continued

R(a,b,c,d)

c -> d

Becomes

R(a,b,c)

R1(c,d)

Summary: 3NF

• Rule: A relation in 2NF with only one non-key
attribute must (inevitably) be in 3NF

• In a normalised relation, a non-key field must
provide a fact about the key, the whole key and
nothing but the key.

• Relations in 3NF are sufficient for most practical
database design problems. However, 3NF does
not guarantee that all anomalies have been
removed.

