Normalisation 1 Review

unnormalised => 1NF => 2NF => 3NF => BCNF

Chapter 4.1 V3.01

Copyright @ Napier University Dr Gordon Russell

INVESTOR IN PEOPLE

Terminology

• R (<u>matric_no</u>, firstname, surname, tutor_no, tutor_name)

tutor_no -> tutor_name

- A given tutor_no uniquely identifies (AKA *functionally determines*) a tutor_name.
- Tutor_name is dependent on tutor_no
- Tutor_no is the determinant
- An implied determinant (underlined) is also present in R:
 - matrix_no -> firstname, surname, tutor_no, tutor_name

First Normal Form

- A relation is in 1NF if, and only if, it contains no repeating attributes or groups of attributes (must be atomic values).
- A table with repeating groups is not in 1NF
 - it is an `unnormalised table'.
- To remove repeating groups, either:
 - flatten the table and extend the key, or
 - decompose (split) the relation

<u>KeyPart1 + KeyPart2</u> => attribute1, attribute2, ...

Second Normal Form

- A relation is in 2NF if, and only if, it is in 1NF and every non-key attribute is fully functionally dependent on the whole key.
- Thus all non-key attributes must depend on the whole key. Another way of saying this is that there must be no partial key dependencies (PKDs).
- Problems arise only when there is a compound key

Key -> non-key attribute -> non-key attribute

transitivity Third Normal Form

- 3NF removes virtually all the redundant data
- A relation is in 3NF if, and only if,
 - it is in 2NF and
 - there are no transitive functional dependencies
- A transitive functional dependency can only occur if there is more than one non-key field
- A non-key field must provide a fact about the key, the whole key (2NF) and nothing but the key (3NF).

Summary: 1NF

Primary Key for the whole relation

- A relation is in 1NF if it contains no repeating groups
- Remember to put the primary key from the original relation into both new relations.

R (<u>a</u>,b, (<u>c</u>,d)) becomes R(<u>a</u>,b) R1(<u>a,c</u>,d)

Summary: 2NF

- A relation is in 2NF if it is in 1NF and has no partial key functional dependencies
- NOTE: A relation in 1NF with a single key field must (inevitably) be in 2NF
- DECOMPOSE:
 - One relation for the attributes that are fully dependent upon the key.
 - One relation for each part of the key that has partially dependent attributes
 - R (<u>a,b</u>,c,d)
 - a->c becomes

R (<u>a,b</u>,d) and R1 (<u>a</u>,c)

NAPIER UNIVERSITY EDINBURGH

INVESTOR IN PEOPLE

Summary: 3NF

- A relation is in 3NF if it it is in 2NF and has no transitive functional dependencies
- NOTE: A relation in 2NF with only one non-key attribute must (inevitably) be in 3NF
- DECOMPOSE To remove transitive functional dependencies, remove the attributes involved in the transitive dependency to a new relation

3NF continued

R(<u>a,b</u>,c,d) c -> d Becomes R(<u>a,b</u>,c) R1(<u>c</u>,d)

