

Normalisation 2

Chapter 4.2 V4.0

Copyright @ Napier University

Normalisation 2

- Overview
 - Define Boyce Codd Normal Form (BCNF)
 - normalise a relation to BCNF
 - more examples 1NF => 2NF => 3NF => BCNF

Candidate Key

- An attribute (or set of attributes) in a functional dependency (determinant) which may be chosen as the Primary key of a relation.
- To be a Primary key it must uniquely identify every row and must include all the attributes
- Some relations may have more than one candidate key e.g.
 - R (empno, name, dob)

empno	=> name, DOB	candidate key <u>empno</u>
name, DOB	=> empno	candidate key <u>name, DOB</u>
name	=> DOB	determinant is NOT a candidate
		only 1 attrib on the RHS

For any given relation, we choose one of the *candidate* keys to be the primary key – others, if any, are called *alternate* keys.

DETERMINANTS

Boyce-Codd Normal Form (BCNF)

- When a relation has more than one candidate key, anomalies may result even though the relation is in 3NF
- 3NF does not deal satisfactorily with the case of a relation with overlapping candidate keys i.e. composite candidate keys with at least one attribute in common.
- BCNF is based on the concept of the *determinant*. (LHS of a functional dependency)
 - A determinant is any attribute (simple or composite) on which some other attribute is fully functionally dependent.
- A relation is in BCNF if, and only if,
 - every determinant is a candidate key.

Not a candidate key

The theory

- Consider the following relation and determinants.
 R(<u>a,b</u>,c,d)

 a,c -> b,d
 a,d -> b
- To be in BCNF, all valid determinants must be candidate keys. In the relation R, for a,c->b,d all of the non-key attributes can be determined, so the first determinant a,c is fine.
- a,d ->b suggests that a,d can be the primary key, which would determine b. However this would not determine c. This is not a candidate key, and thus R is not in BCNF.

Example 1

Patient No	Patient Name	Appointment No.	Time	Doctor
1	John	0	09:00	Zorro
2	Kerr	0	09:00	Killer
3	Adam	1	10:00	Zorro
4	Robert	0	13:00	Killer
5	Zane	1	14:00	Zorro

Two possible keys

- DB (Patno, PatName, appNo, time, doctor)
- Determinants:
 - Patno -> PatName
 - Patno,appNo -> Time,doctor
 - Time -> appNo
- We have two options for 1NF primary key selection:
 - DB (<u>Patno</u>, PatName, <u>appNo</u>, time, doctor) (example 1a)
 - DB (<u>Patno</u>, PatName, appNo, <u>Time</u>, doctor) (example 1b)

Example 1a

- DB (<u>Patno</u>, PatName, <u>appNo</u>, time, doctor)
 - No repeating groups, so in 1NF
- 2NF eliminate partial key dependencies (PKDs):

Partial key

- DB (<u>Patno, appNo</u>, time,doctor)
- R1 (Patno, PatName) [from Patno -> PatName]
- 3NF no transitive dependencies so in 3NF
- Now try BCNF.

BCNF Every determinant is a candidate key

DB(<u>Patno,appNo</u>,time,doctor) R1(<u>Patno</u>,PatName)

- Is every determinant a candidate key?
 - Patno -> PatName
 - 1. DB relation: Patno (LHS) is present but PatName (RHS) is not, so not relevant to DB
 - 2. R1 Relation: Patno is the key to R1 so Patno is a candidate key.As it is the only determinant, every determinant IS a candidate key, and R1 is in BCNF

Continued...

DB(Patno,appNo,time,doctor)

Patno,appNo -> Time,doctor

All LHS and RHS present so relevant. Is this a candidate key? Patno,appNo IS the key, so this is a candidate key.

Time -> appNo

Both Time and appNo, are present in DB so relevant. Is this a candidate key? NO. Time does not determine all attributes, so DB is not in BCNF. => Fix =>

Fix: Decompose to BCNF

- DB(<u>Patno,appNo,time</u>,doctor) R1(<u>Patno</u>,PatName)
- BCNF: rewrite to DB(<u>Patno,time</u>,doctor) R1(<u>Patno</u>,PatName) R2(<u>time</u>,appNo) from Time -> appNo

(another example) MatricNo would substitute for StudName in Napier's database because MatricNo => StudName

- time is enough to work out the appointment number of a patient. Now BCNF is satisfied, and the final relations shown are in BCNF
- Time -> appNo so Time has substituted for appNo in the composite key of DB.

DB (<u>Patno, appNo</u>, time, doctor) =>

R2 (time, appNo)

DB (Patno, appNo, doctor)

DB (Patno, time, doctor) substitute from Time -> appNo

PatNo	Ap	<u>opNo</u>	<u>Time</u>	Doctor
1	0		09:00	Zorro
2	0		09:00	Killer
3	1		10:00	Zorro
4	0		13:00	Killer
5	1		14:00	Zorro

TIME	APPNO
09:00	0
10:00	1
11:00	2
13:00	0
14:00	1
15:00	2
16:00	3

Example 1b a different approach – same result

- DB (<u>Patno, PatName, appNo, time</u>, doctor)
- No repeating groups, so already in 1NF
- 2NF eliminate partial key dependencies:
 - DB(<u>Patno,time</u>,doctor)
 - R1(Patno,PatName) [from Patno -> PatName]
 - R2(<u>time</u>,appNo) [from Time -> appNo]
- 3NF no transitive dependencies so in 3NF
- Now try BCNF.

BCNF Every determinant is a candidate key

DB(Patno,time,doctor)

R1(<u>Patno</u>,PatName)

R2(<u>time</u>,appNo)

- Is each determinant a candidate key (DB relation)?
 - Patno -> PatName Patno is present in DB, but not PatName. Not relevant.
 - Patno,appNo -> Time,doctor
 Not all of LHS present (appNo) so Not relevant
 - Time -> appNo
 Time is present, but not appNo, so Not relevant.
- Relations are already in BCNF. Every determinant is a candidate key

Summary - Example 1

This example has demonstrated three things:

- BCNF is stronger than 3NF, relations that are in 3NF are not necessarily in BCNF
- there are several routes to take to arrive at the same set of relations in BCNF.
 - Unfortunately there are no rules as to which route will be the easiest one to take.

Example 2

Grade_report (StudNo,StudName,(Major, Adviser,

(CourseNo,Ctitle,InstrucName,InstructLocn,Grade)))

- Functional dependencies
 - StudNo -> StudName
 - CourseNo -> Ctitle, InstrucName
 - InstrucName -> InstrucLocn
 - StudNo , Major, CourseNo-> Grade
 - StudNo, Major -> Advisor
 - Advisor -> Major

Example 2 cont...

- Unnormalised Grade_report (StudNo, StudName, (Major, Advisor, (CourseNo, Ctitle, InstrucName, InstructLocn, Grade)))
- 1NF Remove repeating groups
 - Student (StudNo, StudName) [studno => studname]
 - StudMajor (<u>StudNo, Major</u>, Advisor) [studno, major => advisor]
 - StudCourse (<u>StudNo, Major, CourseNo,</u> Ctitle, InstrucName, InstructLocn, Grade)

```
[studno, major, courseno => grade]
```


Example 2 cont...

 1NF Student (<u>StudNo</u>,StudName) StudMajor (<u>StudNo,Major</u>,Advisor) StudCourse (<u>StudNo,Major,CourseNo</u>,Ctitle,InstrucName, InstructLocn,Grade)

[CourseNo => Ctitle, InstrucName]

2NF Remove partial key dependencies
 Student (<u>StudNo</u>, StudName)

StudMajor (StudNo, Major, Advisor)

StudCourse (<u>StudNo, Major, CourseNo</u>, Grade)

Course (CourseNo, Ctitle, InstrucName, InstructLocn)

InstrucName -> InstrucLocn

Example 2 cont...

 2NF Student (<u>StudNo</u>,StudName) StudMajor (<u>StudNo,Major</u>,Advisor) StudCourse (<u>StudNo,Major</u>,CourseNo,Grade) Course (<u>CourseNo</u>, Ctitle, <u>InstrucName</u>, <u>InstructLocn</u>)

[InstructName -> InstructLocn]

 3NF Remove transitive dependencies Student (<u>StudNo</u>,StudName) StudMajor (<u>StudNo,Major</u>,Advisor) StudCourse (<u>StudNo,Major</u>,CourseNo,Grade) Course (<u>CourseNo</u>, Ctitle, InstrucName) Instructor (InstructName, InstructLocn)

Example 2 BCNF

- BCNF Every determinant must be a candidate key
 - Student : only determinant is StudNo
 - StudCourse: only determinant is StudNo, Major, CourseNo
 - Course: only determinant is CourseNo
 - Instructor: only determinant is InstrucName
 - StudMajor: the determinants are
 - StudNo, Major [StudNo, Major -> advisor]
 - Advisor [Advisor -> Major]

Only StudNo, Major is a candidate key. I.e.

StudMajor (StudNo,Major,Advisor)

Advisor cannot be the key for the whole relation

Example 2: BCNF

- BCNF remove non-candidate determinants
- Student (<u>StudNo</u>,StudName) StudCourse (<u>StudNo</u>,Major,CourseNo</u>,Grade) Course (<u>CourseNo</u>,Ctitle,InstrucName) Instructor (<u>InstructName</u>,InstructLocn) StudMajor (<u>StudNo</u>,Major,Advisor)

Advisor -> Major

Because Advisor determines Major

StudMajor (<u>StudNo</u>, <u>Advisor</u>)
 Advisor (<u>Advisor</u>, Major)

Problems that BCNF overcomes

StudMajor (<u>StudNo,Major</u>,Advisor)

<u>STUDENT</u>	MAJOR	ADVISOR
123	PHYSICS	EINSTEIN
123	MUSIC	MOZART
456	BIOLOGY	DARWIN
789	PHYSICS	BOHR
999	PHYSICS	EINSTEIN

- If the record for student 456 is deleted we lose not only information on student 456 but also the fact that DARWIN advises in BIOLOGY
- we cannot record the fact that WATSON can advise on COMPUTING until we have a student majoring in COMPUTING to whom we can assign WATSON as an advisor.

Split into two tables

In BCNF we get two tables: StudMajor (StudNo, Advisor) & Advisor (Advisor, Major)

<u>StudNo</u>	ADVISOR		ADVISOR	MAJOR
123	EINSTEIN	1	EINSTEIN	PHYSICS
123	MOZART	1	MOZART	MUSIC
156	DADWIN		DARWIN	BIOLOGY
789	BOHR		BOHR	PHYSICS
999	EINSTEIN	J		

Now we can delete 456 and or add Watson advising Computing

Returning to the ER Model

- Now that we have reached the end of the normalisation process, you must go back and compare the resulting relations with the original ER model
 - You may need to alter it to take account of the changes that have occurred during the normalisation process
 - Your ER diagram should always be a perfect reflection of the model you are going to implement in the database, so keep it up to date!
 - The changes required depends on how good the ER model was at first!

Video Library Example

- A video library allows customers to borrow videos.
- Assume that there is only 1 of each video.
- We are told that:

video (<u>title</u>, director, serial) customer (name, addr, <u>memberno</u>) hire (memberno, <u>serial, date</u>) title -> director, serial serial -> title serial -> director name, addr -> memberno memberno -> name, addr serial, date -> memberno

What NF is this?

- No repeating groups therefore at least 1NF
- 2NF A Composite key exists: hire(memberno, <u>serial, date</u>)
 - Can memberno be found using just serial or just date ?
 - NO, therefore the relations are already in 2NF (i.e., no PKD possible).
- 3NF?

Test for 3NF

- video(<u>title</u>, director, serial)
 - Title -> director, serial
 - Serial -> director
- Director can be derived using serial, and serial and director are both non keys, so therefore this is a transitive or non-key dependency.
- Rewrite video...

Rewrite for 3NF

- Video (title, director, serial)
 - Title -> director, serial
 - Serial -> director
- Becomes:
- Video (<u>title</u>, serial)
- Serial (serial, director)

Check BCNF

- Is every determinant a candidate key?
- Video (title, serial) Determinants are:
 - title -> director, serial Candidate key
 - serial -> title
 Candidate key
 - Video is in BCNF
- Serial (serial, director) Determinants are:
 - serial -> director
 Candidate key
 - Serial is in BCNF

- Customer (name, addr, memberno) Determinants are:
 - name, addr -> memberno
 - memberno -> name, addr
 - Customer is in BCNF
- Hire (memberno, serial, date) Determinants are:
 - serial, date -> memberno Candidate key
 - Hire is in BCNF
- Therefore the relations are also now in BCNF.
- END

Candidate key

Candidate key