
SQL – JOINs and VIEWs

Chapter 3.3
V4.0

Copyright @ Napier University

Multiple source tables

• Using more than a single table of a
database is usually essential.

• The basic form is to list all the needed
tables in the FROM line.

• You do have to explain to the DBMS how
the tables should be joined together…

JOIN conditions

SELECT * from driver;

NAME DOB

Jim Smith 11 Jan 1980

Bob Smith 23 Mar 1981

Bob Jones 3 Dec 1986

3 Rows

SELECT * from car;

REGNO MAKE COLOUR PRICE OWNER

F611 AAA FORD RED 12000 Jim Smith

J111 BBB SKODA BLUE 11000 Jim Smith

A155 BDE MERCEDES BLUE 22000 Bob Smith

K555 GHT FIAT GREEN 6000 Bob Jones

SC04 BFE SMART BLUE 13000

5 Rows

SELECT *
FROM car, driver

REGNO MAKE COLOUR PRICE OWNER NAME DOB

F611 AAA FORD RED 12000 Jim Smith Jim Smith 11 Jan 1980

J111 BBB SKODA BLUE 11000 Jim Smith Jim Smith 11 Jan 1980

A155 BDE MERCEDES BLUE 22000 Bob Smith Jim Smith 11 Jan 1980

K555 GHT FIAT GREEN 6000 Bob Jones Jim Smith 11 Jan 1980

SC04 BFE SMART BLUE 13000 Jim Smith 11 Jan 1980

F611 AAA FORD RED 12000 Jim Smith Bob Smith 23 Mar 1981

J111 BBB SKODA BLUE 11000 Jim Smith Bob Smith 23 Mar 1981

A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Smith 23 Mar 1981

K555 GHT FIAT GREEN 6000 Bob Jones Bob Smith 23 Mar 1981

SC04 BFE SMART BLUE 13000 Bob Smith 23 Mar 1981

F611 AAA FORD RED 12000 Jim Smith Bob Jones 3 Dec 1986

J111 BBB SKODA BLUE 11000 Jim Smith Bob Jones 3 Dec 1986

A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Jones 3 Dec 1986

K555 GHT FIAT GREEN 6000 Bob Jones Bob Jones 3 Dec 1986

SC04 BFE SMART BLUE 13000 Bob Jones 3 Dec 1986

Cartesian (or Cross)
 Product = 15 Rows

DRIVERCAR

Relationship

Name
Owner

FOREIGN KEY link

REGNO MAKE COLOUR PRICE OWNER NAME DOB

F611 AAA FORD RED 12000 Jim Smith Jim Smith 11 Jan 1980

J111 BBB SKODA BLUE 11000 Jim Smith Jim Smith 11 Jan 1980

A155 BDE MERCEDES BLUE 22000 Bob Smith Jim Smith 11 Jan 1980

K555 GHT FIAT GREEN 6000 Bob Jones Jim Smith 11 Jan 1980

SC04 BFE SMART BLUE 13000 Jim Smith 11 Jan 1980

F611 AAA FORD RED 12000 Jim Smith Bob Smith 23 Mar 1981

J111 BBB SKODA BLUE 11000 Jim Smith Bob Smith 23 Mar 1981

A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Smith 23 Mar 1981

K555 GHT FIAT GREEN 6000 Bob Jones Bob Smith 23 Mar 1981

SC04 BFE SMART BLUE 13000 Bob Smith 23 Mar 1981

F611 AAA FORD RED 12000 Jim Smith Bob Jones 3 Dec 1986

J111 BBB SKODA BLUE 11000 Jim Smith Bob Jones 3 Dec 1986

A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Jones 3 Dec 1986

K555 GHT FIAT GREEN 6000 Bob Jones Bob Jones 3 Dec 1986

SC04 BFE SMART BLUE 13000 Bob Jones 3 Dec 1986

Owner keyCar key

Traditional JOIN

SELECT *
FROM car,driver
WHERE owner = name;

REGNO MAKE COLOUR PRICE OWNER NAME DOB

F611 AAA FORD RED 12000 Jim Smith Jim Smith 11 Jan 1980

J111 BBB SKODA BLUE 11000 Jim Smith Jim Smith 11 Jan 1980

A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Smith 23 Mar 1981

K555 GHT FIAT GREEN 6000 Bob Jones Bob Jones 3 Dec 1986

Car Table Driver Table

Modern JOIN !

SELECT *
FROM car JOIN driver ON (owner = name)
;

REGNO MAKE COLOUR PRICE OWNER NAME DOB

F611 AAA FORD RED 12000 Jim Smith Jim Smith 11 Jan 1980

J111 BBB SKODA BLUE 11000 Jim Smith Jim Smith 11 Jan 1980

A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Smith 23 Mar 1981

K555 GHT FIAT GREEN 6000 Bob Jones Bob Jones 3 Dec 1986

OUTER JOIN

• Consider the last line of the unconstrained join…

• This is a car without an owner.
• Sometimes we want to see the rows that fail the join

condition due to NULL values.
• To see NULL joins we use an OUTER JOIN.
• The JOIN discussed up to this point is known as an
INNER JOIN (i.e. a “normal” join).
• We will discuss this more in the relational algebra

section.

REGNO MAKE COLOUR PRICE OWNER NAME DOB

SC04 BFE SMART BLUE 13000 Bob Jones 3 Dec 1986

• Really, outer join means we want to
force all the rows in one of the tables to
appear in the result.

• There are some variants to OUTER JOIN,
depending on which rows you want to
keep.

• Consider this:

FROM car JOIN driver on (driver =
name)

To the RIGHT of the JOIN

To the LEFT of the JOIN

• If you want all the rows in CAR to always be in the
answer, you need a LEFT OUTER JOIN

• If you want all the rows in DRIVER to always be in
the answer, you need a RIGHT OUTER JOIN

• In our example the NULL causing the problem is in
OWNER, which is in the table CAR.

• CAR is to the left of the word JOIN
• We need a LEFT OUTER JOIN (which is written as just

 LEFT JOIN).

SELECT *

FROM car LEFT JOIN driver ON (owner = name)

;

SELECT *
FROM car LEFT JOIN driver ON (owner = name)
;

REGNO MAKE COLOUR PRICE OWNER NAME DOB

F611 AAA FORD RED 12000 Jim Smith Jim Smith 11 Jan 1980

J111 BBB SKODA BLUE 11000 Jim Smith Jim Smith 11 Jan 1980

A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Smith 23 Mar 1981

K555 GHT FIAT GREEN 6000 Bob Jones Bob Jones 3 Dec 1986

SC04 BFE SMART BLUE 13000

Car Table Driver Table

FULL OUTER JOIN

• With a LEFT OUTER join, you keep all the rows from
the left.

• With a RIGHT OUTER join, you keep all the rows from
the right.

• What if you want to keep all the rows from both sides?
– You need FULL OUTER join, written as FULL JOIN.

• Consider a new row, David Davis, added to DRIVER.
David owns no cars.

NAME DOB

Jim Smith 11 Jan 1980

Bob Smith 23 Mar 1981

Bob Jones 3 Dec 1986

David Davis 1 Oct 1975

Example: LEFT

SELECT *
FROM car LEFT JOIN driver ON (owner = name)
;

REGNO MAKE COLOUR PRICE OWNER NAME DOB

F611 AAA FORD RED 12000 Jim Smith Jim Smith 11 Jan 1980

J111 BBB SKODA BLUE 11000 Jim Smith Jim Smith 11 Jan 1980

A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Smith 23 Mar 1981

K555 GHT FIAT GREEN 6000 Bob Jones Bob Jones 3 Dec 1986

SC04 BFE SMART BLUE 13000

Car Table Driver Table

Example: Right

SELECT *
FROM car RIGHT JOIN driver ON (owner = name)
;

REGNO MAKE COLOUR PRICE OWNER NAME DOB

F611 AAA FORD RED 12000 Jim Smith Jim Smith 11 Jan 1980

J111 BBB SKODA BLUE 11000 Jim Smith Jim Smith 11 Jan 1980

A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Smith 23 Mar 1981

K555 GHT FIAT GREEN 6000 Bob Jones Bob Jones 3 Dec 1986

David Davis 1 Oct 1975

Example: Full

SELECT *
FROM car FULL JOIN driver ON (owner = name)
;

REGNO MAKE COLOUR PRICE OWNER NAME DOB

F611 AAA FORD RED 12000 Jim Smith Jim Smith 11 Jan 1980

J111 BBB SKODA BLUE 11000 Jim Smith Jim Smith 11 Jan 1980

A155 BDE MERCEDES BLUE 22000 Bob Smith Bob Smith 23 Mar 1981

K555 GHT FIAT GREEN 6000 Bob Jones Bob Jones 3 Dec 1986

SC04 BFE SMART BLUE 13000

David Davis 1 Oct 1975

Naming and the Dot Notation

• Sometimes column names can be ambiguous.

• Take two tables, called ALPHA and BRAVO. Lets
assume each table has a column called NAME.

SELECT name from ALPHA, BRAVO;

This query fails, since NAME is in both tables the

DBMS cannot work out which NAME you want.

• You can tell the DBMS by putting the table name in

front of the column name, separated by a dot.

SELECT alpha.name from ALPHA,

BRAVO;

Aliases

• If you are writing a big query, you can find yourself typing
the same long table names again and again.

• This can be quite prone to errors.
• SQL allows us to rename tables for the duration of a

query.
• You put the new name immediately after the table name

in FROM, separated by a space.
• Rather than:

SELECT car.owner FROM car;
• You can say

SELECT c.owner FROM car c;

• This also works for JOIN.

SELECT c.regno, c.owner, d.dob

FROM car c JOIN driver d on (c.owner =
d.name)

• It makes it much easier for the user to
work out what values are coming from
which table.

Selfjoin

• A selfjoin, or an equijoin, is where the
same table is used twice in a FROM line.

• It indicates a need to use a single table in

two different ways simultaneously.

• Consider the question:

“Who drives a car the same colour as Bob
Smith”?

SELECT colour FROM car WHERE owner = ‘Bob Smith’;

SELECT owner FROM car

WHERE colour = ‘BLUE’

AND owner != ‘Bob Smith’

AND owner not null;

Colour

BLUE

owner

Jim Smith

Solution – a self join

SELECT other.owner

FROM car bobsmith, car other

WHERE bobsmith.colour = other.colour -- 1

AND bobsmith.owner = ‘Bob Smith’
-- 2

AND bobsmith.owner != other.owner
-- 3!

AND other.owner NOT NULL -- 4

;

VIEWS

• VIEWS are to a database what subroutines are to a
programming language (i.e., hidden code executed when
called).

• A view allows us to store a query in the database, so that
we can access it later, by name.

• We treat views in the same way as a normal table when
writing queries.

CREATE VIEW ViewName (attribute names)
AS select attribute(s) from table(s);

• Lets write a query to tell us:
How many drivers and how many cars are in the database?
• We could write them separately…

SELECT count(*) from DRIVER;
SELECT count(*) from CAR;

• However this is two queries, and we want to do it in one
query…

• Lets store the two queries in two different VIEWs.

CREATE VIEW count1 (total) AS select count(*) from
driver;

CREATE VIEW count2 (total) AS select count(*) from
car;

Select * from count1;

Select * from count2;

Combined:
Select count1.total,count2.total
from count1, count2;

Total

3

Total

5

Total Total

3 5

optional

CREATE VIEW count1 (total1) AS select count(*) from
driver;

CREATE VIEW count2 (total2) AS select count(*) from
car;

Select * from count1;

Select * from count2;

Combined:
Select total1, total2
from count1,count2;

Total1

3

Total2

5

Total1 Total2

3 5

Deleting a VIEW

• When you are finished with a VIEW you have created
you can delete it.

• You do with with the DROP VIEW command.
• For our example…

DROP VIEW count1;

DROP VIEW count2;

