Hausaufgaben

00000

Graphentheorie 2

Diskrete Strukturen

Uta Priss ZeLL, Ostfalia

Sommersemester 2016

Diskrete Strukturen Graphentheorie 2 Slide 1/23

Agenda

Hausaufgaben

Kantenzüge

Small-World Networks

Humor

SetIX

Ihre Fragen

Was bedeuten "notwendig" und "hinreichend"?

Hausaufgaben

00000

- Potenzen der Matrix (Nicht klausurrelevant. Nächstes Semester.)
- Ordnung eines Algorithmus (Nicht klausurrelevant. Späteres Semester.)
- ► Was bedeutet dies: $\binom{m}{2}$ (in 2 Wochen)

Ihre Fragen

Hausaufgaben

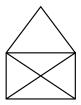
00000

- ► Wie wird der Grad berechnet?
- ► Was ist der Unterschied zwischen einer Adjazenzmatrix für einen Graphen und für einen gerichteten Graphen?
- ► Wie sieht der zugehörige ungerichtete Graph zu einem gerichteten Graphen aus?
- ► Mehr Materialien für SetIX?

Wie viele Kanten kann ein Graph maximal haben?

Wie viele Kanten braucht man mindestens für einen zusammenhängenden Graph?

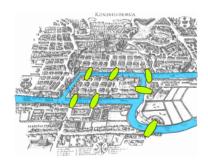
Ein Graph mit mehr als $\frac{(n-1)(n-2)}{2}$ Kanten ist zusammenhängend.


Erläutern Sie. Probieren Sie es an ein paar Beispielen aus.

Kommentieren Sie:

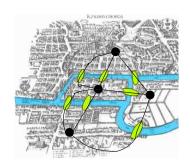
"Wenn es darum geht, einen Graphen im Computer zu verarbeiten, so sind Mengen dazu nicht gerade gut geeignet."

Wie sind diese Begriffe definiert? Wie unterscheiden sie sich? Welche Implikationen gelten?


- ► Kantenzug
- ► Weg
- ▶ Kreis
- ▶ Euler-Zug
- ► Hamilton-Kreis

Stimmt der Satz 15.23 im Buch eigentlich?

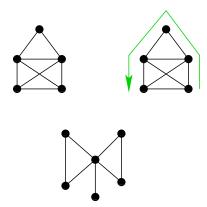
Die sieben Brücken von Königsberg (1735)


Finden Sie einen Pfad durch die Stadt, so dass Sie jede Brücke einmal überqueren.

Diskrete Strukturen Graphentheorie 2 Slide 10/23

Die sieben Brücken von Königsberg (1735)

Ein Multigraph-Problem:



Humor

00

Hamilton-Kreis

Jeder Knoten wird einmal besucht.

Diskrete Strukturen Graphentheorie 2 Slide 12/23

Six degrees of separation

Kennen Sie Frau Merkel? Kennen Sie jemanden, der/die Frau Merkel kennt? Kennen Sie jemanden, der/die jemanden kennt, der/die Frau Merkel kennt?

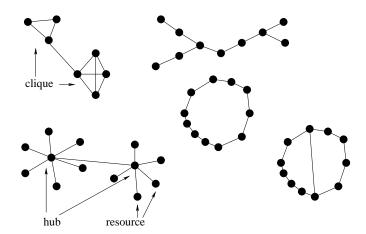
Hausaufgaben

Behauptung: jeder derzeit lebende Mensch ist von jedem anderen höchstens 6 Schritte weit entfernt.

⇒ Kleine-Welt-Phänomen.

Kleine-Welt-Effekte

Kantenzüge

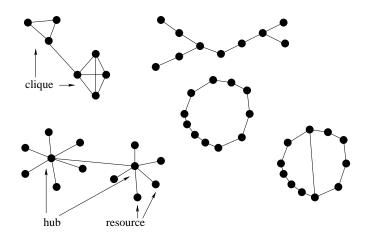

Von jedem Knoten gelangt man zu jedem anderen Knoten über einen kurzen Weg.

Beispiele

- ▶ Soziale Netzwerke
- ► Internet
- ► Strassenkarten
- ► Elektrizitätsnetzwerke

00000

Bei welchen von diesen gilt der Kleine-Welt-Effekt?

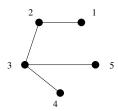


Kleine-Welt-Netzwerke

- ► Kleine-Welt-Effekt: kleiner durchschnittlicher Knotenabstand (Abstand = Länge des kürzesten Pfads)
- kleiner Durchmesser (größter Abstand zweier Knoten in einem Graph)
- ▶ Der Clusterkoeffizient ist größer als bei einem zufällig produzierten Graph mit gleicher Anzahl von Knoten und Kanten. (Clusterkoeffizient = Maß für Transitivität).

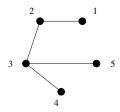
Diskrete Strukturen Graphentheorie 2 Slide 16/23

00000

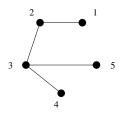


Bei welchen Anwendungen ist ein kleiner Durchmesser wichtig?

Diskrete Strukturen Graphentheorie 2 Slide 17/23


00000

Der Koeffizient a_{ik} von A^m gibt die Anzahl der Kantenzüge der Länge m von i nach k an.


A	1 2 3 4 5	$A^2 \begin{array}{cccccccccccccccccccccccccccccccccccc$	A^3 1 2 3 4 5
1	0 1 0 0 0	1 1 0 1 0 0	1 0 2 0 1 1
2	1 0 1 0 0	2 0 2 0 1 1	2 2 0 4 0 0
3	0 1 0 1 1	3 1 0 3 0 0	3 0 4 0 3 3
4	0 0 1 0 0	4 0 1 0 1 1	4 1 0 3 0 0
5	0 0 1 0 0	5 0 1 0 1 1	5 1 0 3 0 0

00000

A	1 2 3 4 5	A^2 1 2 3 4 5	A^3 1 2 3 4 5
	1 0 1 0 0 0	1 10100	1 0 2 0 1 1
:	2 1 0 1 0 0	2 0 2 0 1 1	2 2 0 4 0 0
	3 0 1 0 1 1	3 1 0 3 0 0	3 0 4 0 3 3
	4 0 0 1 0 0	4 0 1 0 1 1	4 1 0 3 0 0
	5 0 0 1 0 0	5 0 1 0 1 1	5 1 0 3 0 0

00000

A	1 2 3 4 5	$A^2 {}_{1\ 2\ 3\ 4\ 5}$	A^3 1 2 3 4 5
1	0 1 0 0 0	1 10100	1 0 2 0 1 1
2	1 0 1 0 0	2 0 2 0 1 1	2 2 0 4 0 0
3	0 1 0 1 1	3 1 0 3 0 0	3 0 4 0 3 3
4	0 0 1 0 0	4 0 1 0 1 1	4 1 0 3 0 0
5	0 0 1 0 0	5 0 1 0 1 1	5 1 0 3 0 0

SetIX

Humor

•0

Ein Null-Graph:

"The graph with no points and no lines is discussed critically. ... No conclusion is reached."

The question is not whether it exists, but whether there is a point in it.

00000

SetIX

Schreiben Sie ein SetlX-Programm, das feststellt, ob ein Kantenzug ein Weg ist.