Basic set theory Properties	Programming with sets
000000000000000000000000000000000000000	000

Sets

SET07106 Mathematics for Software Engineering

School of Computing Edinburgh Napier University Module Leader: Uta Priss

	1 0000
000000000000000000000000000000000000000	

Outline

Basic set theory

Properties

Programming with sets

Basic set theory	Properties	Programming with sets
0000000000	000000	000

Examples of sets

$\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \\ \{\triangle, \Box, \bigcirc, \triangle, \Box, \bigcirc, \triangle, \Box, \bigcirc\} \\ \{\heartsuit, \blacklozenge, \diamondsuit, \clubsuit\} \\ \{1, 2, 3, 4, ...\} \\ \{2, 3, 5, 7, 11, ...\}$

Basic set theory	Properties	Programming with sets
0000000000	000000	000

Set operators: elements

Sets can be defined *extensionally*, i.e. by listing their elements.

$\triangle \in \{\triangle, \Box, \bigcirc\}$ $\triangle \notin \{\triangle, \Box, \bigcirc\}$

Basic set theory	Properties	Programming with sets
0000000000	000000	000

Set operators: equality

Two sets are equal if they contain the same elements.

 $\{\triangle,\Box,\bigcirc\}=\{\bigcirc,\Box,\triangle\}$

 $\{\triangle, \Box, \bigcirc\} \neq \{\bigcirc, \Box, \triangle\}$

Defining a set: $S := \{\Box, \triangle, \bigcirc\}$

The empty set: $\emptyset := \{\}$

Basic set theory	Properties	Programming with sets
0000000000	000000	000

Set operators: union, intersection and difference

 $A \cup B$ contains elements that are in A or B or in both. $A \cap B$ contains elements that are in A and B. $A \setminus B$ contains elements that are in A but not in B.

```
\{\Box, \Delta, \bigcirc\} \cup \{\Box, \Delta, \bigcirc\} = \{\Box, \Delta, \bigcirc, \Box, \Delta, \bigcirc\}\{\Box, \Delta, \bigcirc, \Box\} \cap \{\Box, \Delta, \bigcirc\} = \{\Box\}\{\Box, \Delta, \bigcirc, \Box\} \setminus \{\Box, \Delta, \bigcirc\} = \{\Box, \Delta, \bigcirc\}\{\Box, \Delta, \bigcirc\} \cap \{\Box, \Delta, \bigcirc\} = \emptyset \text{ (i.e. the sets are disjoint)}
```

Basic set theory	Properties	Programming with sets
0000000000	000000	000

Venn diagrams

Basic set theory	Properties	Programming with sets
000000000	000000	000

Venn diagram for 3 sets

Basic set theory	Properties	Programming with sets
0000000000	000000	000

Venn diagrams: $A \cup B$

Basic set theory	Properties	Programming with sets
00000000000	000000	000

Venn diagrams: $(A \cup B) \setminus C$

Basic set theory	Properties	Programming with sets
000000000000	000000	000

Set operators: subsets

$\{\triangle,\Box,\bigcirc,\triangle\} \subset \{\triangle,\Box,\bigcirc,\triangle,\Box,\bigcirc,\triangle,\Box,\bigcirc\}$

 \subseteq means "either equal or subset"

Laws:

$$A \subseteq B \iff A \subset B \text{ or } A = B$$

$$A\subseteq B \Longleftrightarrow A\cap B = A$$

$$A = B \iff A \subseteq B \text{ and } B \subseteq A$$

Basic set theory	Properties	Programming with sets
000000000000	000000	000

Write down all subsets of $\{\triangle, \Box, \bigcirc\}$.

(This is called the **power set** of $\{\triangle, \Box, \bigcirc\}$.)

000000000000000000000000000000000000000	Basic set theory	Properties	Programming with sets
	00000000000	000000	000

A lattice of all subsets of $\{a, b, c\}$

Basic set theory	Properties	Programming with sets
0000000000	000000	000

Exercise: which of these are true?

- $\{\Delta, \Box, \bigcirc, \Delta, 1\}$ is a set.
- $\{\Box, \Delta, \Box, \bigcirc\}$ is a set.
- $\{ \bigtriangleup \} \in \{ \bigcirc, \Box, \bigtriangleup \}$
- $1 \not\in \{\bigcirc, \Box, \bigtriangleup\}$

- $\{\Box, \triangle, \bigcirc\} \subseteq \{\Box, \triangle, \bigcirc\}$
- $\{\Box, \triangle, \bigcirc\} \subset \{\Box, \triangle, \bigcirc\}$

Basic set theory	Properties	Programming with sets
0000000000	●00000	000

```
Associative
```

Brackets can be moved or left off completely.

```
(A \cap B) \cap C = A \cap (B \cap C)(A \cup B) \cup C = A \cup (B \cup C)
```

This is also true for integer addition (2+3+5), but not if different operators are used: $2 \times (3+5) \neq (2 \times 3) + 5$.

Basic set theory	Properties	Programming with sets
0000000000	00000	000

```
Commutative
```

The order can be changed.

 $A \cap B = B \cap A$ $A \cup B = B \cup A$

This is also true for integer addition (2+5), but not for subtraction: $2-5 \neq 5-2$.

Basic set theory	Properties	Programming with sets
0000000000	00000	000

Distributive

This explains how different operators can be combined.

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$
$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

This is also true for integer addition/multiplication: $2 \times (3+4) = 2 \times 3 + 2 \times 4$. But: $2 + (3 \times 4) \neq (2+3) \times (2+4)$.

Basic set theory	Properties	Programming with sets
0000000000	000000	000

```
Idempotent
```

Repeated operation has no effect.

 $A \cap A = A$ $A \cup A = A$

In general this is not true for integers. For which *n* is n + n = n? For which *m* is $m \times m = m$?

Basic set theory	Properties	Programming with sets
0000000000	000000	000

Transitive

The operation continues across an ordering.

 $A \subseteq B$ and $B \subseteq C$ implies $A \subseteq C$ $A \supseteq B$ and $B \supseteq C$ implies $A \supseteq C$

The same is true for \leq and \geq among integers. 2 \leq 5 and 5 \leq 7 implies 2 \leq 7.

Basic set theory	Properties	Programming with sets
0000000000	000000	000

Exercise

For each of the operators determine which properties they have:

	associative	commutative	distributive	idempotent	transitive
\cap					
U					
=					
\in					
\subseteq					
\backslash					
\subset					

Basic set theory	Properties	Programming with sets
0000000000	000000	•00

Modelling mathematics with a programming language

* In mathematics:
Entities (elements, sets, etc) are abstract.
They exist outside of space and time.

* In programming languages:

All entities are real.

They exist in a space (in memory, on a drive, etc) in real time.

Programming languages can only approximate mathematical entities. It is not possible to conduct pure mathematics with a computer.

Basic set theory	Properties	Programming with sets
0000000000	000000	000

Modelling sets with a programming language

* In mathematics:

The elements in a set can occur in any order. No element can occur more than once. Sets can be infinite.

* In programming languages:
A natural data type is lists, arrays, bags.

list = [1, 2, 3]

Lists are finite, have a fixed order and can contain the same value twice.

Sets in Python

students = Set(['Joe', 'Jane', 'Mary', 'Pete'])

	mathematics	Python
Union	U	
Intersection	\cap	&
Difference	\backslash	-
Element	∈	in