Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

Boolean or Propositional Logic

SET07106 Mathematics for Software Engineering

School of Computing Edinburgh Napier University Module Leader: Uta Priss

2010

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

Outline

Boolean logic

Implication

Defining a set

Propositional Logic

Boolean logic	Implication	Defining a set	Propositional Logic
●000000000	00000	0000000	00000

Boolean logic

Consider variables A, B, C, ... which can have two values: either True (1) or False (0).

There are three logical operators: and, or, not.

Negation: not(not A) = A not(1) = 0 not(0) = 1

Complements: A or (not A) = 1 A and (not A) = 0

Implication: $A \implies B$

Where is this logic used?

In many programming languages, query languages, search engines. Using different notations:

Boolean logic	Implication	Defining a set	Propositional Logic
000000000	00000	0000000	00000

Boolean logic properties

- ► associative:
 - (A and B) and C = A and (B and C) (A or B) or C = A or (B or C)
- commutative:
 - A and B = B and A
 - A or B = B or A
- distributive:
 - (A and B) or C = (A or C) and (B or C) (A or B) and C = (A and C) or (B and C)
- ► idempotent:
 - A and A = A
 - A or A = A
- \blacktriangleright transitive: A \Longrightarrow B and B \Longrightarrow C implies A \Longrightarrow C

Boolean logic	Implication	Defining a set	Propositional Logic
000000000	00000	0000000	00000

Logic versus natural language

The logical use of "and, or, not" can be quite different from how these are used in natural language.

Formal logic can be counter-intuitive.

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

What does "and" mean in these sentences:

► He entered the room and sat down.

Boolean logic	Implication	Defining a set	Propositional Logic
000000000	00000	0000000	00000

What does "and" mean in these sentences:

- \blacktriangleright He entered the room and sat down. \Longrightarrow then
- She bought a computer and a printer.

Boolean logic	Implication	Defining a set	Propositional Logic
000000000	00000	0000000	00000

What does "and" mean in these sentences:

- \blacktriangleright He entered the room and sat down. \Longrightarrow then
- \blacktriangleright She bought a computer and a printer. \Longrightarrow and
- ► Students in classes 101 and 202.

Boolean logic	Implication	Defining a set	Propositional Logic
000000000	00000	0000000	00000

What does "and" mean in these sentences:

- He entered the room and sat down. \Longrightarrow then
- She bought a computer and a printer. \Longrightarrow and
- Students in classes 101 and 202. \Longrightarrow or

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

OR

What does "or" mean in these sentences:

► Would you like a beer or a whisky.

Boolean logic	Implication	Defining a set	Propositional Logic
000000000	00000	0000000	00000

OR

What does "or" mean in these sentences:

- ► Would you like a beer or a whisky.
 ⇒ exclusive or: "either or" (BOTH would be impolite)
- ► I bet he is sitting in the bar and drinking a beer or a whisky.

Boolean logic	Implication	Defining a set	Propositional Logic
000000000	00000	0000000	00000

OR

What does "or" mean in these sentences:

► Would you like a beer or a whisky. ⇒ exclusive or: "either or" (BOTH would be impolite)

► I bet he is sitting in the bar and drinking a beer or a whisky.
⇒ inclusive or: (BOTH is acceptable)

Logical "or" is always inclusive: "one or the other or both".

Boolean logic	Implication	Defining a set	Propositional Logic
00000000000	00000	0000000	00000

► Rhetoric uses: The drink was not bad.

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

- ▶ Rhetoric uses: The drink was not bad.
- ► Double negative: I doN'T DISlike computers.

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

- Rhetoric uses: The drink was not bad.
- Double negative: I doN'T DISlike computers. \implies positive
- ► Double negative: We doN'T need NO education.

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

- Rhetoric uses: The drink was not bad.
- Double negative: I doN'T DISlike computers. \implies positive
- Double negative: We doN'T need NO education. \implies negative

Logical "not not A" always means "A".

Boolean logic	Implication	Defining a set	Propositional Logic
00000000000	00000	0000000	00000

Truth Tables

$$not(name = 'Smith' or age = '40')$$

name	age	name or age	not(name or age)
true	true	true	false
true	false	true	false
false	true	true	false
false	false	false	true

Boolean logic	Implication	Defining a set	Propositional Logic
00000000000	00000	0000000	00000

De Morgan's law

- not (a and b) = (not a) or (not b)
- not (a or b) = (not a) and (not b)

He doesn't want tea or coffee.

He doesn't want tea and he doesn't want coffee.

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

Exercise

Use de Morgan's laws to show that the complement of $(\overline{A} \text{ and } B)$ and $(A \text{ or } \overline{B})$ and (A or C)

is

 $(A \text{ or } \overline{B}) \text{ or } (\overline{A} \text{ and } (B \text{ or } \overline{C}))$

Note: \overline{A} means: not A.

Boolean logic	Implication	Defining a set	Propositional Logic
000000000	00000	0000000	00000

Set theory and Boolean logic

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

Implication

$\mathsf{A} \Longrightarrow \mathsf{B} \quad \text{means} \quad (\text{not } \mathsf{A}) \text{ or } \mathsf{B}$

А	В	not(A)	(not A) or B
true	true	false	true
true	false	false	false
false	true	true	true
false	false	true	true

True implies true.

True can never imply false.

If A is false, then anything can be implied.

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

Examples of implication: $A \Longrightarrow B$

- A is true:
 - If x = 2, then 2x = 4.
 - ► If you practice for an exam, then you will succeed.
- ► A is false:
 - ► If I were a carpenter, then I would be rich.
 - ▶ If 5 = 7, then 15 = 22.

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

Exercise: is this true or false?

If Sue is a programmer, then she is smart. If Sue is an early riser, then she does not like porridge. If Sue is smart, then she is an early riser.

Therefore, if Sue is a programmer, then she does not like porridge.

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

Contraposition

$A \Longrightarrow B$ implies not $B \Longrightarrow$ not A.

Example:

If it is raining, I carry an umbrella. If I don't carry an umbrella, it is not raining.

The following are false:

If it is not raining, I do not carry an umbrella. If I carry an umbrella, it is raining.

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

Prove that contraposition is true, i.e. $A \Longrightarrow B$ implies not $B \Longrightarrow$ not A.

Hint: you can use truth tables or the properties of Boolean logic for this.

000000000 00000 00000 00000 00000	Boolean logic	Implication	Defining a set	Propositional Logic
	0000000000	00000	●0000000	00000

Extensional and intensional definition of sets

* Extensional:

```
 \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \} \\ \{ 2, 4, 6, 8, 10 \} \\ \{ 2, 3, 5, 7, 11, \ldots \}
```

* Intensional:

```
 \{n \mid 1 \le n \le 10\} 
  \{m \mid m = 2n \text{ and } 1 \le n \le 5\} 
  \{n \mid n \text{ is a prime number } \} 
  = \{n \mid \forall_k : k \text{ is a factor of } n \implies n = 1 \text{ or } n = k\}
```

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

Intensional definition of sets

 $\{n \mid \forall_k : k \text{ is a factor of } n \implies n = 1 \text{ or } n = k\}$

 \star name of the resulting variable: *n*

★ definition: $\forall_k : k \text{ is a factor of } n \implies n = 1 \text{ or } n = k$

What symbols can be used in definitions?

Here: \forall_k , =, "is a factor of", and, or, not

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

The Liar's Paradox

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

The Liar's Paradox

Either:

The Liar speaks the truth \Rightarrow The Liar lies.

Or:

The Liar lies \Rightarrow "I am a liar" is wrong. The Liar speaks the truth.

	ing a set	Fropositional Logic
00000 00000 00000	0000	00000

Russell's paradox: Is there a set of all sets?

Intensional: $S := \{T \mid T \text{ is a set }\}$ Extensional: $S := \{\text{ set of integers, set of real numbers, set of traffic light symbols, set of all things in the universe, ..., S }.$

But then one can also define:

 \overline{S} : the set of all sets that do not contain itself. But then since \overline{S} does not contain itself, it must contain itself!

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	00000000	00000

What does this mean for Set Theory?

- Sets must be carefully defined.
- Not every collection of elements that can be described in words is necessarily a set.
- In extensional definitions of infinite sets, it must be clear what "..." means.
- In intensional definitions, it must be clear what symbols can be used.

If one isn't sure whether something is a set, call it a "class". There is no "set of all sets", but there is a "class of sets".

000000000 00000 00000 00000 00000 00000 0000	Boolean logic	Implication	Defining a set	Propositional Logic
	0000000000	00000	00000000	00000

In intensional definitions, it must be clear what symbols can be used:

A **formal logic** is a language with a fixed set of symbols with syntax, grammar, semantics (formal meaning) which can be used for defining sets and for reasoning, deduction and inference.

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

Exercise

Which of these are sets, which are classes?

- ► all elements in the universe
- ▶ $n \mid n < 5$ and n > 5
- ▶ all dinosaurs which ever lived on the Earth
- all dinosaurs which would be alive now, if some catastrophe had not killed their species
- all sets
- all subsets of a set

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	●0000

Propositional logic

A proposition is a statement that is either true or false.

000000000000000000000000000000000000000	0000

Exercise: which of these are propositions?

- ► 1+1=2
- ► How are you?
- I am fine.
- ► x == 3
- ► if (x == 3) {
- ► print 'Hello World'
- ▶ n = n + 1

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	0000

Formal propositions

Propositions are formed using "and, or, not" and variables (i.e. Boolean Logic).

The semantics (or meaning) of a proposition is its truth value.

Two propositions p, q are equivalent $(p \iff q)$ if they always have the same truth value. (They are either both true or both false.)

boolean logic Im	iplication	Defining a set	Propositional Logic
0000000000 00	0000	0000000	00000

Exercise: which of these are equivalent?

- ▶ 1 + 1 = 2 and 2 + 2 = 4
- ► It is raining today.
- ▶ 8 is a prime number.
- $\blacktriangleright \ x = 3 \Longleftrightarrow x = 4$
- There are 25 students in this classroom.

Boolean logic	Implication	Defining a set	Propositional Logic
0000000000	00000	0000000	00000

Intensional definitions of sets

Propositional logic in combination with some mathematical symbols (=, \leq , \times) can be used to define sets, such as:

$$\{2, 4, 6, 8, 10\} = \{m \mid m = 2 \times n \text{ and } 1 \le n \le 5\}$$

But propositional logic is not sufficient for this definition:

$$\{n \mid \forall_k : k \text{ is a factor of } n \implies n = 1 \text{ or } n = k\}$$

because \forall_k is not part of propositional logic.