Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	00000

Graphs

SET07106 Mathematics for Software Engineering

School of Computing Edinburgh Napier University Module Leader: Uta Priss

2010

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	00000

Outline

Graphs

Eulerian and Hamiltonian

Applications

Graph layout software

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
•0000000	00000	000000000	00000

Binary relations

 $\{ (a,5), (e,5), (e,4), (z,7) \}$

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	00000

A binary relation can be represented as a graph

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	00000

A graph consists of nodes (vertices) and edges

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	00000

Undirected and directed graphs

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	00000

The complete graphs for $n \leq 6$

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
000000000	00000	000000000	00000

Exercises

- Draw the complete graph with 7 nodes.
- ▶ How many edges does every node have in a complete graph?
- ► How many edges does a complete graph have?

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
000000000	00000	000000000	00000

A graph can be connected or disconnected

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
000000000	00000	000000000	00000

A bipartite graph has two sets of nodes

Edges are from one set of nodes to the other. There are no edges within the same set of nodes.

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	00000

Exercise

Are there any complete graphs which are bipartite?

Can you draw this figure ...

in one go without starting and stopping in between?

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	00000

Eulerian path

Each edge is visited once.

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	00000

Seven bridges of Königsberg (1735)

Walk through the city and cross each bridge exactly once.

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	00000

Seven bridges of Königsberg

This is graph problem.

Euler asserted that a graph has a Eulerian path if the graph is connected and has either no or two nodes with an odd number of edges.

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	00000

Hamiltonian path

Each node is visited once.

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	●000000000	00000

Travelling salesman problem

What is the shortest path for a salesman to visit a given set of cities?

A problem of

- ► optimisation
- planning

A graph where the edges are labelled with the distances between the cities.

Among all the Hamiltonian paths, find the one which minimises distances.

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	00000

Sudoku

A bipartite graph.

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	00000

Sudoku

A tripartite graph.

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	00000000	00000

6 degrees of separation

Do you know the Prime Minister? Do you know someone who knows the Prime Minister? Do you know someone who knows someone who knows the PM?

The claim: everybody is connected to everybody else by at most 6 degrees of separation.

 \implies It is a small world.

Small-world effect

Every node can be reached by every other node by a short path.

Examples:

- Social networks
- Internet
- Road maps
- Electric power grids

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	00000

Which of these have a small-world effect?

Small-world networks

- Small world effect: small average node-to-node distance (shortest path length)
- Clustering coefficient that is larger than the clustering coefficient of a random graph with the same number of nodes and edges.

Having a large clustering coefficient means that "the people you know also know each other".

Other graph applications

- Links between webpages
- Sitemaps
- ► Flow charts, UML diagrams
- Database schemata, ER diagrams
- Class hierarchies
- Web site paths traversed by users
- XML tree structures and DTDs

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	0000000000	00000

Picture of a Null Graph:

	(indifficulture)	diapi	i layout soitware
0000000 00000	000	0000 000000	00

Harary and Read (1973): Is the Null Graph a Pointless Concept?

"The graph with no points and no lines is discussed critically. ... No conclusion is reached."

The question is not whether it exists, but whether there is a point in it.

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	00000

Harary and Read (1973): Is the Null Graph a Pointless Concept?

"The graph with no points and no lines is discussed critically. ... No conclusion is reached."

The question is not whether it exists, but whether there is a point in it.

From Wolfram MathWorld: "the only good null graph is a dead null graph"

00000000 00000 000000 000000	Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
	00000000	00000	000000000	•0000

Graphs are special kinds of vector graphics

- Moving or removing a node affects its edges.
- Graph editors provide graph layout algorithms.

Graphs Eul	ierian and Hamiltonian	Applications	Graph layout software
00000000 00	0000	000000000	00000

Graph layout software/editors

- TouchGraph, spring embedder algorithms
- ► Java toolkits: Prefuse, ...
- ► Graphviz: open source graph visualisation software

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	0000

Graphviz

- www.graphviz.org
- Directed and undirected graphs.
- ► Graph layouts: hierarchies, spring, radial, circular.
- ► Simple text-based format (called "dot format").
- ► APIs for different programming languages exist.
- ► Many output formats: gif, jpg, svg, pdf, ...

Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	00000

The "dot format"

```
digraph names {
node0 [label=''John'']
node1 [label=''Mary'']
node2 [label=''Paul'']
node0 -> node1
node0 -> node2
node2 -> node1
}
```


Graphs	Eulerian and Hamiltonian	Applications	Graph layout software
00000000	00000	000000000	00000

Hierarchical, radial, circular layouts:

Spring layouts:

