Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
0000	00	000000	0000

Small World Networks

SET07106 Mathematics for Software Engineering

School of Computing Edinburgh Napier University Module Leader: Uta Priss

2011

Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
0000	00	000000	0000

Outline

Introduction

Watts & Strogatz

Scale-free networks

Clustering Coefficient

This lecture is partly based on the book "Small World" by Mark Buchanan.

Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
●000	00	000000	0000

Stanley Milgram's Small-World Experiment

Sending packages to a stockbroker in Boston by sending them to random people in Nebraska and asking them to forward to someone who might know the stockbroker.

 \Rightarrow Six degrees of separation

Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
0000	00	000000	0000

Erdös number

Mathematician Paul Erdös published more papers than any other mathematician in history and had hundreds of co-authors.

Co-authors have Erdös number 1.

Co-authors of co-authors have Erdös number 2.

90 percent of the world's active mathematicians have an Erdös number smaller than 8.

It has been said: Someone who does not have an Erdös number is not a mathematician.

Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
0000	00	000000	0000
0000	00	000000	0000

But: not every network is a small world

For example: Six degrees only relevant for living people.

Distance between people who lived hundreds of years apart is much larger.

Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
0000	00	000000	0000

Two types of networks

- ► Watts & Strogatz networks
- ► Scale-free networks

Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
0000	•0	000000	0000

Watts & Strogatz's networks

Examples: electric power grid, neuron connections in the brain

Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
0000	0•	000000	0000

Watts & Strogatz's networks

- high local clustering with a few distant links
- ► egalitarian
- no hubs

Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
0000	00	●00000	0000

Scale-free networks

Examples: WWW, citation networks, airline networks, biological networks

Copyright Edinburgh Napier University

Small World Networks

Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
0000	00	00000	0000

Scale-free networks

- hubs and resources
- power law distribution
- ▶ growths: preferential attachment ("the rich get richer")

Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
0000	00	00000	0000

Power law distribution

Examples: word frequencies, earthquakes, popularity of movies hubs and resources on the WWW

Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
0000	00	000000	0000

Diffusion limited aggregation

 \Rightarrow fractal growths, self-similarity, preferential attachment ("the rich get richer") Example: river networks, hubs on the WWW

Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
0000	00	000000	0000

Comparison of small world network types

Watts & Strogatz	scale-free
egalitarian	hubs and resources
no growth	preferential attachment
local clusters and distant links	power law
under attack: deteriorates	under random attack: stable
no particular targets	under targeted attack: weak

Both: small average node-to-node distance

Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
0000	00	00000●	0000

Application: disease control

Diseases are spread by "hubs".

 \Rightarrow Outbreaks can be controlled by treating the hubs.

Examples:

- Treatment of rabies in foxes: vaccinate the ones that are travelling long distance.
- ► Influenza: vaccinate children.

Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
0000	00	000000	●000

Clustering Coefficient

Clustering for node $n = \frac{|\text{ actual edges between neighbours of } n|}{|\text{ possible edges between neighbours of } n|}$

Number of possible edges between k nodes: $\frac{k(k-1)}{2}$ (I.e. number of edges in a complete graph with k nodes)

Clustering coefficient for node n with k neighbours

$$C(n) = \frac{|\text{actual edges}|}{\frac{k(k-1)}{2}} = \frac{2 \times |\text{actual edges}|}{k(k-1)}$$

Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
0000	00	000000	0000

Clustering Coefficient

Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
0000	00	000000	0000

Exercise: Calculate the average clustering coefficient

Introduction	Watts & Strogatz	Scale-free networks	Clustering Coefficient
0000	00	000000	0000

Exercise: Calculate the average clustering coefficient

