Binary relations	Properties	N-ary relations
000	00000000	0000

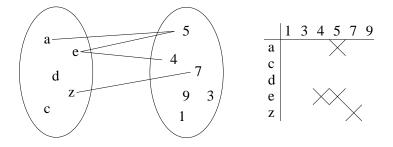
Relations and matrices

SET07106 Mathematics for Software Engineering

School of Computing Edinburgh Napier University Module Leader: Uta Priss

Binary relations	Properties	N-ary relations
000	00000000	0000

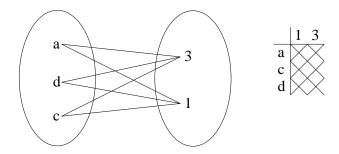
Outline


Binary relations

Properties

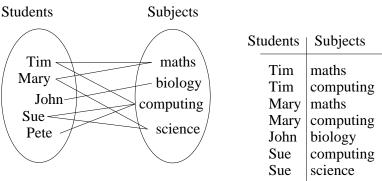
N-ary relations

Binary relations	Properties	N-ary relations
●00	00000000	0000


Binary relations

 $\{ (a,5), (e,5), (e,4), (z,7) \}$

Binary relations	Properties	N-ary relations
000	00000000	0000

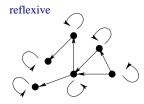

Cartesian product

 $\{ (a,1), (a,3), (c,1), (c,3), (d,1), (d,3) \}$

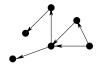
A complete bipartite graph. $|A| \times |B|$ elements.

Another example

Pete computing


Properties of binary relations

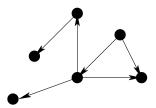
- reflexive: for all elements: (a, a)
- symmetric: $(a, b) \iff (b, a)$
- antisymmetric: $a \neq b : (a, b) \implies \operatorname{not}(b, a)$
- transitive: $(a, b), (b, c) \Longrightarrow (a, c)$


Binary relations	Properties	N-ary relations
000	00000000	0000

Reflexivity

For all elements: (a, a)

can also be drawn like this:



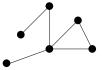
Binary relations	Properties	N-ary relations
000	0000000	0000

Directed graphs (digraphs)

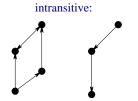
 $a \neq b : (a, b) \Longrightarrow \operatorname{not}(b, a)$

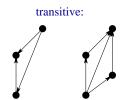
antisymmetric:

Binary relations	Properties	N-ary relations
000	0000000	0000


Undirected graphs

$$(a,b) \Longleftrightarrow (b,a)$$

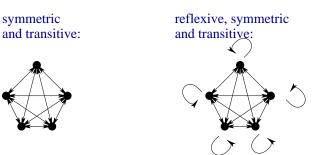




Binary relations	Properties	N-ary relations
000	00000000	0000

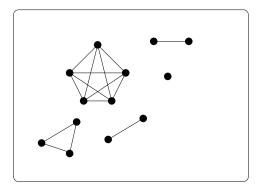
Transitivity

$$(a,b),(b,c) \Longrightarrow (a,c)$$


Binary relations	Properties	N-ary relations
000	00000000	0000

Equivalence relation (or partition)

An equivalence relation is a relation that is symmetric, reflexive and transitive.


Binary relations	Properties	N-ary relations
000	000000000	0000

Equivalence relation: complete graph

Binary relations	Properties	N-ary relations
000	000000000	0000

Equivalence relation: set of complete graphs

Binary relations	Properties	N-ary relations
000	00000000	0000

Exercises

Determine the properties of these relations and draw a graph for each relation.

- $R_1 = \{(1,1), (1,2), (2,2), (2,1), (3,3), (4,4)\}$
- $\blacktriangleright R_2 = \{(1,1), (1,3), (2,2), (2,1), (3,1), (1,2)\}$
- ▶ $R_3 = \{(a, b), (b, c), (c, d), (d, e), (e, a)\}$
- ▶ $R_4 = \{(a, b), (b, c), (a, c), (d, e), (f, g)\}$
- $R_5 = \{\}$
- ► $R_6 = \{(a, a)\}$

Ternary and n-ary relations

For example a relational database:

name	street	city	phone	billAmount
Mary Smith	Colinton Road	Edinburgh	123 4567	15.00
Paul Jones	London Road	Edinburgh	123 8765	17.00
Paul Jones	London Road	Edinburgh	123 3926	21.50
Tim Taylor	Colinton Road	Edinburgh	123 6385	15.00
Susan Miller	Baker Street	London	345 5932	7.00

Key attributes:

Ternary and n-ary relations

For example a relational database:

name	street	city	phone	billAmount
Mary Smith	Colinton Road	Edinburgh	123 4567	15.00
Paul Jones	London Road	Edinburgh	123 8765	17.00
Paul Jones	London Road	Edinburgh	123 3926	21.50
Tim Taylor	Colinton Road	Edinburgh	123 6385	15.00
Susan Miller	Baker Street	London	345 5932	7.00

Key attributes: name and phone

Binary relations	Properties	N-ary relations
000	00000000	0000

Ternary and n-ary relations

name	street	city	phone	billAmount
	Colinton Road			
Paul Jones	London Road	Edinburgh	123 8765	17.00
Paul Jones	London Road	Edinburgh	123 3926	21.50

The relations in relational databases are functions on the key attributes.

```
street('Mary Smith') = 'Colinton Road'
```

billAmount('Paul Jones', '123 8765') = 17.00

Binary functions: matrices

A special kind of a ternary relation is a binary function, which can be represented as a matrix.

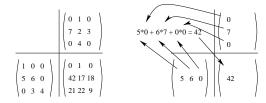
Table:
Matrix:

 $\frac{1}{a}$ $\frac{2}{2}$ $\frac{3}{15}$ $\frac{15}{2}$ $\frac{15}{10}$ $\frac{15}{1}$ $\frac{17}{1}$ $\frac{15}{1}$ $\frac{15}{1}$ $\frac{15}{1}$ $\frac{15}{1}$ $\frac{15}{1}$ $\frac{15}{1}$ $\frac{15}{1}$ $\frac{15}{1}$ $\frac{15}{1}$ $\frac{15}{1}$

Ternary relation:

 $\{ (a,1,15), (a,2,2), (a,3,17), (b,1,1), (b,2,10), (b,3,16), \\ (c,1,4), (c,2,5), (c,3,17) \}$

Binary function:


Binary relations	Properties	N-ary relations
000	00000000	0000

Matrix operations

Addition:			
100		010	1 1 0
560	+	7 2 3	12 8 3
0 3 4		040	074

Multiplication:

,	1 0	0		0 1 0		0 1 0
	56	0	0	723	=	42 17 18
1	03	4	1	040		21 22 9

