Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	000000	0000000

Lattices and classification

SET07106 Mathematics for Software Engineering

School of Computing Edinburgh Napier University Module Leader: Uta Priss

2010

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	000000	0000000

Outline

Ordered sets

Trees

Lattices

Formal concept analysis

Ordered sets	Trees	Lattices	Formal concept analysis
●0000	00000	000000	000000

Reminder: properties of binary relations

- antisymmetric: $a \neq b : (a, b) \Longrightarrow$ not (b, a)
- ▶ reflexive: for all elements: (*a*, *a*)
- transitive: $(a, b), (b, c) \Longrightarrow (a, c)$

A **partially ordered set (poset)** is a reflexive, antisymmetric and transitive binary relation.

Ordered sets	Trees	Lattices	Formal concept analysis
0000	00000	000000	0000000

Directed acyclic graphs

Ordered sets	Trees	Lattices	Formal concept analysis
0000	00000	000000	000000

Partially ordered set (poset)

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	000000	0000000

Order relation \leq

The binary relation of a partially ordered set is written as \leq .

- ▶ antisymmetric: $a \neq b$: $a \leq b \implies$ not $b \leq a$
- reflexive: for all elements: $a \leq a$
- transitive: $a \le b, b \le c \Longrightarrow a \le c$

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	000000	0000000

Order relation \leq

The binary relation of a partially ordered set is written as \leq .

- ▶ antisymmetric: $a \neq b$: $a \leq b \implies$ not $b \leq a$
- reflexive: for all elements: $a \leq a$
- transitive: $a \le b, b \le c \Longrightarrow a \le c$

For example:

- antisymmetric: $5 \le 7 \implies$ not $7 \le 5$
- reflexive: $6 \le 6$
- $\blacktriangleright \text{ transitive: } 3 \leq 4, 4 \leq 7 \Longrightarrow 3 \leq 7$

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	000000	0000000

Order relation \leq

The binary relation of a partially ordered set is written as \leq .

- ▶ antisymmetric: $a \neq b$: $a \leq b \implies$ not $b \leq a$
- reflexive: for all elements: $a \leq a$
- transitive: $a \le b, b \le c \Longrightarrow a \le c$

For example:

- antisymmetric: $5 \le 7 \implies$ not $7 \le 5$
- reflexive: $6 \le 6$
- transitive: $3 \le 4, 4 \le 7 \Longrightarrow 3 \le 7$

If $a \neq b$, one can also write a < b or a > b.

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	000000	000000

Examples of posets

- ► Scheduling problems: PERT charts, flow charts
- Dependency graphs: software installers, compilers, variable dependencies
- C++ class hierarchy (a hierarchy where every node can have multiple parents)
- ► Part-whole relationships (e.g. food and ingredients)

Ordered sets	Trees	Lattices	Formal concept analysis
00000	●0000	000000	0000000

Tree order

A tree is a poset where each child node has exactly one parent node. A tree has a single root node.

A binary tree is a tree where each node has either exactly two children or no children.

Ordered sets	Trees	Lattices	Formal concept analysis
00000	0000	000000	0000000

Ordered sets	Trees	Lattices	Formal concept analysis
00000	0000	000000	0000000

Examples of tree orders

- B-tree search structures in operating systems and databases
- Directory structures in operating systems (without symbolic links)
- Java class hierarchy
- XML document structure
- Library classification systems
- Genealogy

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	000000	000000

Find all trees with 6 nodes.

Hint: there are 6 different ones.

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	000000	0000000

Linearly (or totally) ordered set

A linearly ordered set is a poset where each two nodes are comparable, i.e. for *a*, *b*, either a = b or a < b or b < a.

For example: $1 < 2 < 3 < \dots < 15 < 16 < 17 < \dots$

 $A < B < C < D < \ldots < Z < a < b < \ldots < z$

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	●00000	000000

Lattice

A lattice is a poset where each two nodes have a greatest common child node and a least common parent node.

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	00000	0000000

Lattices and posets

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	00000	0000000

Example: divisor lattices

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	00000	0000000

Draw the divisor lattices for 18, 36 and 108.

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	000000	0000000

Examples of lattices

- The subset relation \subset among sets.
- ▶ The integers: 1 < 2 < 3 < 4 < (This lattice is infinite.)
- ► Boolean logic.
- Concept lattices (see the next slides).

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	00000	000000

Leibniz: Characteristica universalis (17th century)

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	000000	000000

Formal concept analysis

Formal concept analysis (FCA) is a mathematical method for data analysis and knowledge representation which uses lattice theory. A binary relation (or **formal context**) is converted into a **concept lattice**.

FCA is based on philosophical notions of the duality of concepts (extension and intension). It was invented in the 1980s and has since grown into an international field of research with applications in many domains.

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	000000	000000

Formal context and concept lattice

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	000000	000000

Subconcept-superconcept relation

Copyright Edinburgh Napier University

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	000000	0000000

An interval scale

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	000000	0000000

A nominal scale

ordered sets frees	Lattices	Formal concept analysis
00000 00000	000000	0000000

A nested line diagram

Ordered sets	Trees	Lattices	Formal concept analysis
00000	00000	000000	000000

FCA applications in software engineering

- Visualise and analyse Java class hierarchies
- Detect variable or code dependencies
- Analyse dependencies and vulnerabilities in Linux
- ► Re-engineering, code analysis, module restructuring