An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	000

Probability

SET07106 Mathematics for Software Engineering

School of Computing Edinburgh Napier University Module Leader: Uta Priss

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	000

An example

Probability and intuition

Mathematical probability

Testing

An example	Probability and intuition	Mathematical probability	Testing
●0000000	0000	0000000	000

Optical illusion

All example Frobability		iviatnematical probability
0000000 0000	(0000000

Optical illusion: evidence

Testing 000

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	000

The Monty Hall's game show problem

A prize is hidden behind one of 4 doors. A contestant chooses one door (which is NOT opened). The game show host then opens two doors which don't contain the prize. Two doors remain closed. The contestant can now choose whether the originally selected door shall be opened or the other closed door.

What should the contestant do?

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	000

Contestant selects a door (which stays closed)

The treasure is behind one of the doors

An example	Probability and intuition	Mathematical probability	Testing
00000000	0000	0000000	000

Two empty doors opened by the host

An example	Probability and intuition	Mathematical probability	Testing
00000000	0000	0000000	000

Contestant makes final choice

Stick with the original choice or select the other closed door?

Intuition about probability

If a prize is behind one of two doors. The probability for each door to contain the prize is 50%.

If a prize is behind one of four doors. The probability for each door to contain the prize is 25%.

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	000

Monty Hall's game show: solution

The door which the contestant chose originally contains the prize with a probability of 25%.

Opening two more doors does not change the probability of the original door. It stays 25%.

That means the only other remaining door contains the prize with a probability of 75%.

The contestant should always choose not to have the original door opened, but instead the other door in order to have a winning chance of 75%.

An example	Probability and intuition	Mathematical probability	Testing
0000000	●000	0000000	000

Innumeracy

"All of the students in this country are below average."

An example	Probability and intuition	Mathematical probability	Testing
0000000	●000	0000000	000

Innumeracy

"All of the students in this country are below average."

(Innumeracy is the mathematical equivalent to illiteracy. John Allen Paulos (1988))

Intuitions about probability

- Practice improves performance.
 Example: shooting an arrow at a target many times will improve during the learning phase.
- Central tendency: if an activity is repeated many times, the result should approach an average.
 Examples: the sequel of a best-selling movie, will be more average; children of unusually tall/short parents tend to be of more average height.

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	000

Intuitions about probability (continued)

- Co-occurrence and correlation: if two events co-occur, there is likely to be a connection (assumed causality).
 Example: if someone feels ill after drinking too much, it is likely to be caused by the alcohol.
- Using a random experiment for decision making.
 Examples: "head or tails"; "drawing the short straw"
- An explanation is more likely if it fits a mental model.
 Example: a person who has a university degree is more likely to have a well-paid job than a person without a degree.

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	000

- The Monty Hall problem conflicts with intuitions about random experiments.
- Does it become more likely to win in the lottery if one plays for many years?

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	000

- The Monty Hall problem conflicts with intuitions about random experiments.
- Does it become more likely to win in the lottery if one plays for many years? (This is not an example of "practice improves performance"!)
- ► A man is worried about the probability that there could be a bomb on board of his plane. Just to be sure he carries one bomb himself because the probability of two bombs is tiny.

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	000

- The Monty Hall problem conflicts with intuitions about random experiments.
- Does it become more likely to win in the lottery if one plays for many years? (This is not an example of "practice improves performance"!)
- ► A man is worried about the probability that there could be a bomb on board of his plane. Just to be sure he carries one bomb himself because the probability of two bombs is tiny.
- Correlation: countries with higher meat consumption have higher cancer rates. Does eating meat cause cancer?

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	000

- The Monty Hall problem conflicts with intuitions about random experiments.
- Does it become more likely to win in the lottery if one plays for many years? (This is not an example of "practice improves performance"!)
- A man is worried about the probability that there could be a bomb on board of his plane. Just to be sure he carries one bomb himself because the probability of two bombs is tiny.
- Correlation: countries with higher meat consumption have higher cancer rates. Does eating meat cause cancer? Or do richer countries have a higher life expectancy? (There can be a hidden cause, or co-occurring events might have no relationship at all.)

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	●0000000	000

Pigeon hole principle

If 366 people are in the same room, at least two will have the same birthday. Why?

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	000

Example: what is the probability that 2 people have different birthdays?

How many possibilities are there for 2 people to have different birthdays:

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	000

Example: what is the probability that 2 people have different birthdays?

How many possibilities are there for 2 people to have different birthdays: 365×364 .

How many possibilities are there for 2 people to have any birthdays:

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	000

Example: what is the probability that 2 people have different birthdays?

How many possibilities are there for 2 people to have different birthdays: 365×364 .

How many possibilities are there for 2 people to have any birthdays: 365×365 .

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	000

Probability that 2 people have different birthdays:

Calculating the probability of an event: <u>all relevant events</u> all possible events

Probability that 2 people have different birthdays: $\frac{365 \times 364}{365 \times 365}$

Probability that 2 people have the same birthday:

$$1 - \frac{\text{all relevant events}}{\text{all possible events}} = 1 - \frac{365 \times 364}{365 \times 365} = \frac{365}{365} - \frac{364}{365} = \frac{1}{365}$$

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	000

How many people are needed so that there is a 50% probability that two people have the same birthday?

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	000

How many people are needed so that there is a 50% probability that two people have the same birthday?

Three people:
$$1 - \frac{\text{all relevant events}}{\text{all possible events}} = 1 - \frac{365 \times 364 \times 363}{365 \times 365 \times 365} = 0.008$$

Keep trying with 4, 5, 6, until value > 0.50.

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	000

How many people are needed so that there is a 50% probability that two people have the same birthday?

Three people:
$$1 - \frac{\text{all relevant events}}{\text{all possible events}} = 1 - \frac{365 \times 364 \times 363}{365 \times 365 \times 365} = 0.008$$

Keep trying with 4, 5, 6, until value > 0.50.

23 people are needed.

(This is a lot less than the 366 people that are needed to have 2 people with the same birthday with 100% certainty.)

Rules about probability

- ▶ Probability is a value between 0 and 1 (or 0% and 100%).
- An impossible event has probability 0.
- A certain event has probability 1.
- Complement: P(not A) = 1 P(A)
- ▶ Two events: $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Two independent events: $P(A \cap B) = P(A) \times P(B)$

Probability of two events

If a person has a university degree, which of the following is more probable:

- ▶ 1) The person has children.
- ▶ 2) The person has children and a well-paid job.

Probability of two events

If a person has a university degree, which of the following is more probable:

- ▶ 1) The person has children.
- ▶ 2) The person has children and a well-paid job.
- 1) is a single statement: P(A).
- 2) is a conjunction of two statements: $P(A \cap B) = P(A) \times P(B)$

Probability of two events

If a person has a university degree, which of the following is more probable:

- ▶ 1) The person has children.
- ▶ 2) The person has children and a well-paid job.
- 1) is a single statement: P(A). 2) is a conjunction of two statements: $P(A \cap B) = P(A) \times P(B)$

 $P(A) \geq P(A) \times P(B)$

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	00000000	000

Probability of throwing at least one 1 with two dice:

Throwing one 1 with one dice:

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	00000000	000

Probability of throwing at least one 1 with two dice:

Throwing one 1 with one dice: $\frac{1}{6}$. Throwing two 1s with two dice:

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	00000000	000

Probability of throwing at least one 1 with two dice:

Throwing one 1 with one dice: $\frac{1}{6}$. Throwing two 1s with two dice: $\frac{1}{36}$. Throwing at least one 1 with two dice:

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	00000000	000

Probability of throwing at least one 1 with two dice:

Throwing one 1 with one dice: $\frac{1}{6}$. Throwing two 1s with two dice: $\frac{1}{36}$. Throwing at least one 1 with two dice: $P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{6} + \frac{1}{6} - \frac{1}{36} = \frac{11}{36}$

11 possibilities: (1,1),(2,1),(1,2),(3,1),(1,3),(4,1),(1,4),(5,1),(1,5),(6,1),(1,6)

What is the probability of getting at least 1 "head" with 2 coins?

0000000 0000 0000 000 000	An example	Probability and intuition	Mathematical probability	Testing
	0000000	0000	0000000	000

Winning the lottery

Which combination of numbers is more probable: 1, 2, 3, 4, 5, 6 or 13, 25, 27, 35, 41, 45?

	<u> </u>
<u> </u>	00

Winning the lottery

Which combination of numbers is more probable: 1, 2, 3, 4, 5, 6 or 13, 25, 27, 35, 41, 45?

All possibilities to draw 6 out of 49: $\frac{49!}{6! \times (49-6)!} = \frac{1 \times 2 \times 3 \times ... \times 49}{(1 \times 2 \times ... \times 6) \times (1 \times 2 \times ... \times 4)} = \frac{44 \times 45 \times 46 \times ... \times 49}{1 \times 2 \times ... \times 6} = 13,983,816$

Probability of getting all 6 right: $\frac{1}{13,983,816}$

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	0000000	0 00

Inferential statistics

Using probability theory to

- estimate a value (for example a mean)
- ► test a hypothesis
- ▶ make a prediction

An example	Probability and intuition	Mathematical probability	Testing
0000000	0000	00000000	000

Testing

A test for cancer correctly diagnoses cancer in 98% of the tests. In 2% of the tests, the result is false positive, i.e. the test shows cancer even though the patient is healthy.

Assumptions:

10,000 people are tested with this cancer test and the cancer is fairly rare (only 0.5 % of people have this cancer).

If a patient is told that the test is positive, should the patient worry?

Testing (continued)

Test is 98% correct: $98/100 \times 0.5/100 \times 10,000 = 49$

Test has 2% false positives: $2/100 \times (1 - 0.5/100) \times 10,000 = 199$

 \Rightarrow Test has 248 positive results. 49/248 \approx 20% probability to have cancer if test positive.