
An Introduction to Semiotic-Conceptual Analysis
with Formal Concept Analysis?

Uta Priss

Zentrum für erfolgreiches Lehren und Lernen
Ostfalia University of Applied Sciences

Wolfenbüttel, Germany
www.upriss.org.uk

Abstract. This paper presents a formalisation of Peirce’s notion of ‘sign’ using
a triadic relation with a functional dependency. The three sign components are
then modelled as concepts in lattices which are connected via a semiotic map-
ping. We call the study of relationships relating to semiotic systems modelled in
this manner a semiotic-conceptual analysis. It is argued that semiotic-conceptual
analyses allow for a variety of applications and serve as a unifying framework for
a number of previously presented applications of FCA.

1 Introduction

The American philosopher C. S. Peirce was a major contributor to many fields with a
particular interest in semiotics. The following quote shows one of his definitions for the
relationships involved in using a sign:

A REPRESENTAMEN is a subject of a triadic relation TO a second, called
its OBJECT, FOR a third, called its INTERPRETANT, this triadic relation be-
ing such that the REPRESENTAMEN determines its interpretant to stand in
the same triadic relation to the same object for some interpretant. (Peirce, CP
1.541)1

According to Peirce a sign consists of a physical form (representamen) which could,
for example, be written, spoken or represented by neurons firing in a brain, a meaning
(object) and another sign (interpretant) which mirrors the original sign, for example, in
the mind of a person producing or observing a sign. It should be pointed out that the use
of the term ‘relation’ by Peirce is not necessarily the same as in modern mathematics
which distinguishes more clearly between a ‘relation’ and its ‘instances’. Initially Peirce
even referred to mathematical relations as ‘relatives’ (Maddux, 1991).

We have previously presented an attempt at mathematically formalising Peirce’s
definition (Priss, 2004). In our previous attempt we tried to presuppose as few assump-
tions about semiotic relations as possible which led to a fairly open structural descrip-
tion which, however, appeared to be limited with respect to usefulness in applications.
? Published in Yahia; Konecny (eds.) Proc of CLA’2015.
1 It is customary among Peirce scholars to cite Peirce in this manner using an abbreviation of

the publication series, volume number and paragraph or page numbers.



Now we are presenting another formalisation which imposes a functional dependency
on the triadic relation. The notions from Priss (2004) are translated into this new for-
malism which is in many ways simpler, more clearly defined and appears to be more
useful for applications.

In order to avoid confusion with the notion of ‘object’ in FCA2, we use the term
‘denotation’ instead of Peirce’s ‘object’ in the remainder of this paper. We translate the
first half of Peirce’s definition into modern language as follows: “A representamen is
a parameter of a function resulting in a second, called its denotation, where the third,
the function instance, is called interpretant.” – or in other words as a function of type
‘third(first) = second’. In our modelling, a set of such functions together with their
parameter/value pairs constitute a triadic semiotic relation. We use Peirce’s notion of
‘interpretant’ for the function instances whereas the functions themselves are called
‘interpretations’. A sign is then an instance of this triadic relation consisting of rep-
resentamen, denotation and interpretation. This is more formally defined in the next
section.

The second half of Peirce’s definition refers to the mental image that a sign in-
vokes in participants of communication acts. For Peirce, interpretants are mental images
which can themselves be thought about and thus become representamens for other inter-
pretants and so on. Because the focus of this paper is on formal, not natural languages,
mental images are not important. We suggest that in formal languages, interpretants are
not mental representations but instead other formal structures, for example, states in a
computer program.

The data structures used in formal languages (such as programming languages,
XML or UML) can contain a significant amount of complexity. A semiotic-conceptual
analysis as proposed in this paper allows to investigate the components of such struc-
tures as signs with their representamens, denotations and interpretations and their rela-
tionships to each other. As a means of structuring the semiotic components we use FCA
concept lattices.

It should be noted that there has recently been an increase of interest in triadic
FCA (e.g., Gnatyshak et al. (2013), Belohlavek & Osicka (2012)) which could also be
used to investigate triadic semiotic relations. But Peirce tends to see triadic relations as
consisting of three components of increasing complexity:

The First is that whose being is simply in itself, not referring to anything nor
lying behind anything. The Second is that which is what it is by force of some-
thing to which it is second. The Third is that which is what it is owing to
things between which it mediates and which it brings into relation to each other.
(Peirce, EP 1:248; CP 1.356)

In our opinion this is better expressed by a function instance of type ‘third(first)
= second’ than by an instance ‘(first, second, third)’ of a triadic relation. Other re-
searchers have already suggested formalisations of Peirce’s philosophy. Interestingly,
Marty (1992), Goguen (1999) and Zalamea (2010) all suggest using Category Theory

2 Because Formal Concept Analysis (FCA) is the main topic of this conference, this paper does
not provide an introduction to FCA. Information about FCA can be found, for example, on-line
(http://www.upriss.org.uk/fca/) and in the main FCA textbook by Ganter & Wille (1999).



for modelling Peirce’s philosophy even though they appear to have worked indepen-
dently of each other. Marty even connects Category Theory with FCA in his modelling.
Goguen develops what he calls ‘algebraic semiotics’. Zalamea is more focussed on Ex-
istential Graphs than semiotics (and unfortunately most of his papers are in Spanish).
Nevertheless our formalisation is by far not as abstract as any of these existing formal-
isations which are therefore not further discussed in this paper.

This paper has five further sections. Section 2 presents the definitions of signs, semi-
otic relations and NULL-elements. Section 3 continues with defining concept lattices
for semiotic relations. Section 4 explains degrees of equality among signs. Section 5
discusses mappings among the lattices from Section 3 and presents further examples.
The paper ends with a concluding section.

2 Core definitions of a semiotic-conceptual analysis

The main purpose of this work is to extend Peirce’s sign notion to formal languages
such as computer programming languages and formal representations. Figure 1 displays
a simple Python program which is called ’Example 1’ in the remainder of this paper.
The table underneath shows the values of the variables of Example 1 after an execution.
The variables are representamens and their values are denotations. Because Peirce’s
definition of signs seems to indicate that there is a separate interpretant for each sign,
there are at least eight different interpretants in column 3 of the table. It seems more
interesting, however, to group interpretants than to consider them individually. We call
such groupings of interpretants interpretations. In natural language examples, one could
group all the interpretants that belong to a sentence or paragraph. In programming lan-
guages starting a loop or calling a subroutine might start a new interpretation. As a
condition for interpretations we propose that each representamen must have a unique
denotation in an interpretation, or in other words, interpretations are functions. There
are many different possibilities for choosing sets of interpretations. Two possibilities,
called IA and IB in the rest of the paper, are shown in the last two columns of the ta-
ble. Each contains two elements which is in this case the minimum required number
because some variables in Example 1 have two different values. In our modelling an
interpretant corresponds to a pair of representamen and interpretation. For R and IA
there are ten interpretants (and therefore ten signs) whereas there are eight for R and
IB . The first three columns of the table can be automatically derived using a debugging
tool. The interpretants are numbered in the sequence in which they are printed by the
debugger.

Definition 1: A semiotic relation S ⊆ I × R ×D is a relation between three sets
(a set R of representamens, a set D of denotations and a set I of interpretations) with
the condition that any i ∈ I is a partial function i : R 7→ D. A relation instance (i, r, d)
with i(r) = d is called a sign. In addition to S, we define the semiotic (partial) mapping
S : I × R 7→ D with S(i, r) = d iff i(r) = d. The pairs (i, r) for which d exists are
called interpretants.

It follows that there are as many signs as there are interpretants. Example 1 shows
two semiotic relations using either IA or IB for the interpretations. The interpretations
firstLoop, secondLoop and firstValue are total functions. The interpretation second-



input_end = "no"
while input_end != "yes":

input1 = raw_input("Please type something: ")
input2 = raw_input("Please type something else: ")
if (input1 == input2):

counter = 1
error = 1
print "The two inputs should be different!"

else:
counter = 2

input_end = raw_input("End this program? ")

representamens R denotations D interpretants interpretations IA interpretations IB
(variables) (values) (∼10 interpretants) (∼ 8 interpretants)

input1 ”Hello World” j1 firstLoop firstValue
input2 ”Hello World” j2 firstLoop firstValue
counter 1 j3 firstLoop firstValue

input end no j4 firstLoop firstValue
error 1 j5 firstLoop firstValue

input1 ”Hello World” j6 (or j1) secondLoop firstValue
input2 ”How are you” j7 secondLoop secondValue
counter 2 j8 secondLoop secondValue

input end yes j9 secondLoop secondValue
error 1 j10 (or j5) secondLoop firstValue

Fig. 1. A Python program (called ‘Example 1’ in this paper)

Value is a partial function. Because for (i1, r1, d1) and (i2, r2, d2), i1 = i2, r1 = r2 ⇒
d1 = d2, it follows that all r ∈ R with r(i) = d are also partial functions r : I 7→ D.
The reason for having a relation S and a mapping S is because Peirce defines a relation
but in applications a mapping might be more usable. In this paper the sets R, D and I
are meant to be finite and not in any sense universal but built for an application. The
assignment operation (written ‘:=’ in mathematics or ‘=’ in programming languages)
is an example of i(r) = d except that i is usually implied and not explicitly stated in
that case.

Using the terminology from database theory, we call a semiotic relation a triadic re-
lation with functional dependency. This is because, on the one hand, Peirce calls it not a
mapping but a ‘triadic relation’, on the other hand, without this functional dependency
it would not be possible to determine the meaning of a sign given its representamen and
an interpretation. Some philosophers might object to Definition 1 because of the func-
tional dependency. We argue that the added functional dependency yields an interesting
structure which can be explored as shown in this paper.

The idea of using interpretations as a means of assigning meaning to symbols is
already known from formal semantics and model theory. But this paper has a different
focus by treating interpretations and representamens as dual structures. Furthermore in
applications, S(i, r) might be implemented as an algorithmic procedure which deter-
mines d for r based on information about i at runtime. A debugger as in Example 1



is not part of the original code but at a meta-level. Since the original code might re-
quest user input (as in Example 1), the relation instances (i, r, d) are only known while
or after the code was executed. Thus the semiotic relation is dynamically generated in
an application. This is in accordance with Peirce’s ideas about how it is important for
semiotics to consider how a sign is actually used. The mathematical modelling (as in
Definition 1) which is conducted after a computer program finished running, ignores
this and simply considers the semiotic relation to be statically presented.

Priss (2004) distinguishes between triadic signs and anonymous signs which are
less complex. In the case of anonymous signs, the underlying semiotic relation can be
reduced to a binary or unary relation because of additional constraints. Examples of
anonymous signs are constants in programming languages and many variables used
in mathematical expressions. For instance, the values of variables in the Pythagorean
equation a2 + b2 = c2 are all the values of all possibly existing right-angled triangles.
But, on the one hand, if a2 + b2 = c2 is used in a proof, it is fine to assume |I| = 1
because within the proof the variables do not change their values. On the other hand,
if someone uses the formula for an existing triangle, one can assume S(i, r) = r be-
cause in that case the denotations can be set equal to the representamens. Thus within a
proof or within a mathematical calculation variables can be instances of binary or unary
relations and thus anonymous signs. However, in the following Python program:

a = input("First side: ")
b = input("Second side: ")
print a*a + b*b

the values of the variables change depending on what is entered by a user. Here the
signs a and b are triadic.

A sign is usually represented by its representamen. In a semiotic analysis it may
be important to distinguish between ‘sign’ and ‘representamen’. In natural language
this is sometimes indicated by using quotes (e.g., the word ‘word’). In Example 1, the
variable ‘input1’ is a representamen whereas the variable ‘input1’ with a value ‘Hello
World’ in the context of firstLoop is a sign. It can happen that a representamen is taken
out of its context of use and loses its connection to an interpretation and a denotation.
For example, one can encounter an old file which can no longer be read by any current
program. But a sign always has three components (i, r, d). Thus just looking at the
source code of a file creates an interpretant in that person’s mind even though this new
sign and the original sign may have nothing in common other than the representamen.
Using the next definition, interpretations that are partial functions can be converted into
total functions.

Definition 2: For a semiotic relation, a NULL-element d⊥ is a special kind of deno-
tation with the following conditions: (i) i(r) undefined inD ⇒ i(r) := d⊥ inD∪{d⊥}.
(ii) d⊥ ∈ D ⇒ all i are total functions.

Thus by enlarging D with one more element, one can convert all i into total func-
tions. If all i are already total functions, then d⊥ need not exist. The semiotic mapping
S can be extended to a total function S : I × R → D ∪ {d⊥}. There can be different
reasons for NULL-elements: caused by the selection of interpretations or by the code
itself. Variables are successively added to a program and thus undefined for any inter-
pretation that occurs before a variable is first defined. In Example 1, secondValue is a
partial function because secondValue(input1) = secondValue(error) = d⊥. But IA shows



that all interpretations can be total functions. On the other hand, if a user always enters
two different values, then the variable ‘error’ is undefined for all interpretations. This
could be avoided by changing the code of Example 1. In more complex programs it
may be more difficult to avoid d⊥, for example if a call to an external routine returns
an undefined value. Programming languages tend to allow operations with d⊥, such as
evaluating whether a variable is equal to d⊥, in order to avoid run-time errors resulting
from undefined values. Because the modelling in the next section would be more com-
plex if conditions for d⊥ were added we decided to mostly ignore d⊥ in the remainder
of this introductory paper.

3 Concept lattices of a semiotic relation

In order to explore relationships among signs we are suggesting to model the compo-
nents of signs as concept lattices. The interpretations which are (partial) functions from
R to D then give rise to mappings between the lattice for R and the lattice for D. Fig-
ure 2 shows an example of concept lattices for the semiotic relation from Example 1.
The objects are the representamens, denotations and interpretations of Example 1. The
attributes are selected for characterising the sets and depend on the purpose of an appli-
cation. If the denotations are values of a programming language, then data types are a
fairly natural choice for the attributes of a denotation lattice.

Attributes for representamens should focus on representational aspects. In Example
1, all input variables start with the letters ‘input’ because of a naming style used by
the programmer of that program. In some languages certain variables start with upper
or lowercase letters, use additional symbols (such as ‘@’ for arrays) or are complex
structures (such as ’root.find(”file”).attrib[”size”]’) which can be analysed in a repre-
sentamen lattice. In strongly-typed languages, data types could be attributes of repre-
sentamens but in languages where variables can change their type, data types do not
belong into a representamen lattice. Rules for representamens also determine what is to
be ignored. For example white space is ignored in many locations of a computer pro-
gram. The font of written signs is often ignored but mathematicians might use Latin,
Greek and Fraktur fonts for representamens of different types of denotations.

One way of deriving a lattice for interpretations is to create a partially ordered set
using the ordering relation as to whether one interpretation precedes another one or
whether they exist in parallel. A lattice is then generated using the Dedekind closure. In
Figure 2 the attributes represent some scaling of the time points of the interpretations.
Thus temporal sequences can be expressed but any other ordering can be used as well.

Definition 3: For a set R of representamens, a concept lattice B(R,MR, JR) is
defined where MR is a set of attributes used to characterise representamens and JR
is a binary relation JR ⊆ R × MR. B(R,MR, JR) is called representamen lattice.
B(R,MR, JR) is complete for a set of interpretations3 if for all r ∈ R: ∀i∈I : γ(r1) =
γ(r2)⇒ i(r1) = i(r2) and γ(r1) 6= γ(r2)⇒ ∃i∈I : i(r1) 6= i(r2).

Definition 4: For a set I of interpretations, a concept latticeB(I,MI , JI) is defined
whereMI is a set of attributes used to characterise the interpretations and JI is a binary

3 For an object o its object concept γ(o) is the smallest concept which has the object in its
extension.



Interpretation lattice

number

1
2

string

"Hello World"
"How are you"

.

other

input1
input2
input_end

counter
error

secondLoop

firstLoop

> 0

> 1

noyes

negativepositive

binary

Representamen lattice Denotation lattice

input

Fig. 2. Lattices for Example 1

relation JI ⊆ I ×MI . B(I,MI , JI) is called interpretation lattice. B(I,MI , JI) is
complete for a set of representamens if for all i ∈ I: ∀r∈R : γ(i1) = γ(i2) ⇒ i1(r) =
i2(r) and γ(i1) 6= γ(i2)⇒ ∃r∈R : i1(r) 6= i2(r).

The representamen lattice in Figure 2 is not complete for IA because, for exam-
ple, ‘input end’ and ’input1’ have different denotations. The interpretation lattice is
complete for R because no objects have the same object concept and firstLoop and sec-
ondLoop have different denotations, for example, for ‘counter’. Completeness means
that exactly those representamens or interpretations that share their object concepts can
be used interchangeably without any impact on their relationship with the other sets.
The dashed lines in Figure 2 are explained below in Section 5.

Definition 5: For a set D \ {d⊥} of denotations, a concept lattice B(D,MD, JD)
is defined where MD is a set of attributes used to characterise the denotations and JD
is a binary relation JD ⊆ D ×MD. B(D,MD, JD) is called denotation lattice.

4 Equality and other sign properties

Before continuing with the consequences of the definitions of the previous section,
equality of signs should be discussed because there are different degrees of equality.
Two signs, (i1, r1, d1) and (i2, r2, d2), are equal if all three components are equal. Be-
cause of the functional dependency this means that two signs are equal if i1 = i2 and
r1 = r2. In normal mathematics the equal sign is used for denotational equality. For
example, x = 5 means that x has the value of 5 although clearly the representamen x
has nothing in common with the representamen 5. Since signs are usually represented
by their representamens denotational equality needs to be distinguished from equal-
ity between signs. Denotational equality is called ‘strong synonymy’ in the definition
below. Even strong synonymy is sometimes too much. For example natural language
synonyms (such as ‘car’ and ‘automobile’) tend to always still have subtle differences
in meaning. In programming languages, if a counter variable increases its value by 1,
it is still thought of as the same variable. But if such a variable changes from ‘3’ to
‘Hello World’ and then to ‘4’, depending on the circumstances, it might indicate an



error. Therefore we are defining a tolerance relation4 T ⊆ D ×D to express that some
denotations are close to each other in meaning. With respect to the denotation lattice,
the relation T can be defined as the equivalence relation of having the same object con-
cept or via a distance metric between concepts. The following definition is an adaptation
from Priss (2004) that is adjusted to the formalisation in this paper.

Definition 6: For a semiotic relation with tolerance relations TD ⊆ D × D and
TI ⊆ I × I the following are defined:

• i1 and i2 are compatible⇔ ∀r∈R,i1(r) 6=d⊥,i2(r)6=d⊥ : (i1(r), i2(r)) ∈ TD
• i1 and i2 are mergeable⇔ ∀r∈R,i1(r) 6=d⊥,i2(r)6=d⊥ : i1(r) = i2(r)
• i1 and i2 are TI -mergeable⇔ (i1, i2) ∈ TI and i1 and i2 are mergeable
• (i1, r1, d1) and (i2, r2, d2) are strong synonyms⇔ r1 6= r2 and d1 = d2
• (i1, r1, d1) and (i2, r2, d2) are synonyms⇔ r1 6= r2 and (d1, d2) ∈ TD
• (i1, r1, d1) and (i2, r2, d2) are equinyms⇔ r1 = r2 and d1 = d2
• (i1, r1, d1) and (i2, r2, d2) are polysemous⇔ r1 = r2 and (d1, d2) ∈ TD
• (i1, r1, d1) and (i2, r2, d2) are homographs⇔ r1 = r2 and (d1, d2) 6∈ TD

It follows that if a representamen lattice is complete for a set of interpretations, rep-
resentamens that share their object concepts are strong synonyms for all interpretations.
In Example 1, if TD corresponds to {Hello World, How are you}, {yes, no}, {1, 2} then
firstLoop and secondLoop are compatible. Essentially this means that variables do not
radically change their meaning between firstLoop and secondLoop. Mergeable interpre-
tations have the same denotation for each representamen and could be merged into one
interpretation. In Example 1 the interpretations in IA (or in IB) are not mergeable. Us-
ing TI -mergeability it can be ensured that only interpretations which have something
in common (for example temporal adjacency) are merged. There are no examples of
homographs in Example 1 but the following table shows some examples for the other
notions of Definition 6.

strong synonyms (firstLoop, input2, ”Hello World”) (secondLoop, input1, ”Hello World”)
synonyms (firstLoop, input1, ”Hello World”) (secondLoop, input2, ”How are you”)
equinyms (firstLoop, input1, ”Hello World”) (secondLoop, input1, ”Hello World”)
polysemous (firstLoop, input2, ”Hello World”) (secondLoop, input2, ”How are you”)

Some programming languages use further types of synonymy-like relations, for ex-
ample, variables can have the same value and but not the same data type or the same
value but not be referring to the same object. An example of homographs in natural
languages is presented by the verb ‘lead’ and the metal ‘lead’. In programming lan-
guages, homographs are variables which have the same name but are used for totally
different purposes. If this happens in separate subroutines of a program, it does not
pose a problem. But if it involves global variables it might indicate an error in the code.
Thus algorithms for homograph detection can be useful for checking the consistency of
programs. Compatible interpretations are free of homographs.

Definition 7: A semiotic relation with concept lattices as defined in Definitions
3-5 is called a semiotic system. The study of semiotic systems is called a semiotic-
conceptual analysis.

4 A tolerance relation is reflexive and symmetric.



5 Mappings between the concept lattices

A next step is to investigate how (and whether) the interpretations as functions from
R to D give rise to interesting mappings between the representamen and denotation
lattice. For example, if the representamen lattice has an attribute ‘starts with uppercase
letter’ and it is common practice in a programming language to use uppercase letters
for names of classes and there is an attribute ‘classes’ in the denotation lattice, then
one would want to investigate whether this information is preserved by the mapping
amongst the lattices. The following definition describes a basic relationship:

Definition 8: For a semiotic relation, the power set P(R), subsets I1 ⊆ I and R1 ⊆
Rwe define: I∨1 : P (R)\{} → B(D,MD, JD) with I∨1 (R1) :=

∨
i∈I1

∨
r∈R1

γ(i(r)).
Because the join relation in a lattice is commutative and associative it does not

matter whether one first iterates through interpretations or through representamens (i.e.,∨
i∈I1

∨
r∈R1

or
∨

r∈R1

∨
i∈I1 ). An analogous function can be defined for infima. One

can also consider the inverse (I∨1 )
−1.

Definition 8 allows for different types of applications. One can look at the results
for extensions (and thus concepts of the representamen lattice), one-element sets (cor-
responding to individual elements in R) or elements of a tolerance relation. The same
holds for the subsets of I . The question that arises in each application is whether the
mapping I∨1 has some further properties, such as being order-preserving or whether
it forms an ‘infomorphism’ in Barwise & Seligman’s (1997) terminology (together
with an inverse mapping). It may be of interest to find the subsets of R for which
(I∨1 )

−1I∨1 (R1) = R1.
In the case of Figure 2, ‘input end’ is mapped onto the concepts with attribute ‘pos-

itive’, ‘negative’ or ‘binary’ depending on which set of interpretations is used. The
other representamens are always mapped onto the same concepts no matter which set
of interpretations is used. For the extensions of the representamen lattice this leads to
an order-preserving mapping. Thus overall the structures of the representamen and de-
notation lattice seem very compatible in this example. Other examples could produce
mappings which change radically between different interpretations. In a worst case sce-
nario, every representamen is mapped to the top concept of the denotation lattice as
soon as more than one interpretation is involved.

In Figure 2 the interpretation lattice is depicted without any connection to the other
two lattices. Furthermore even though a construction of R∨1 in analogy to I∨1 would
be possible it would not be interesting for most applications because most elements
would be mapped to the top element of the denotation lattice. Thus different strategies
are needed for the representamen and interpretation lattices. One possibility of connect-
ing the three lattices is to use a ‘faceted display’ similar to Priss (2000). The idea for
Figure 3 is to use two facets: the denotation lattice which also contains the mapped
representamens and the interpretation lattice. If a user ‘clicks’ on the upper concept in
the interpretation lattice, the lattice on the left-hand side of Figure 3 is displayed. If a
user clicks on the lower interpretation, the lattice on the right-hand side is displayed.
Switching between the two interpretations would show the movement of ‘input end’.
This is also reminiscent of the work by Wolff (2004) who uses ‘animated’ concept lat-
tices which show the movement of ‘complex objects’ (in contrast to formal objects)



across the nodes of a concept lattice. In our semiotic-conceptual analysis the interpreta-
tions are not necessarily linearly-ordered (as Wolff’s time units) but ordered according
to a concept lattice.

input_end

number
string

negativepositive

binary

is defined

secondLoop

firstLoop

> 0

> 1

input1

input2
counter

error

number
string

negativepositive

binary

is defined

input1

counter

input2

error

input_end

Fig. 3. Switching between interpretations

Instead of variables or strings, representamens can also be more complex structures,
such as graphs, UML diagrams, Peirce’s existential graphs, relations or other complex
mathematical structures which are then analysed using interpretations. Figure 4 shows
an example from Priss (1998) which was originally presented in terms of what Priss
called ‘relational concept analysis5’. The words in the figure are entries from the elec-
tronic lexical database WordNet6. The solid lines in Figure 4 are subconcept relation
instances from a concept lattice although the lattice drawing is incomplete in the figure.
The dashed lines are part-whole relation instances that are defined among the concepts.
Using a semiotic-conceptual analysis, this figure can be generated by using represen-
tamens which are instances of a part-whole relation. Two interpretations are involved:
one maps the first component of each relation instance into the denotation lattice, the
other one maps the second component. Each dashed line corresponds to the mapping
of one representamen. For each representamen, I∨(r) is the whole and I∧(r) the part
of the relation instance. Priss (1999) calculates bases for semantic relations which in
this modelling as a semiotic-conceptual analysis correspond to searching for infima and
suprema of such representamens as binary relations.

Figure 4 shows an example of a data error. The supremum of ‘hand’ and ‘foot’
should be the concept which is a part of ‘limb’. There should be a part-whole relation
from ‘digit’ to that ‘extremity’ concept. Although it would be possible to write an al-
gorithm that checks for this error systematically, this is probably again an example of
where a user can detect an error in the data more easily (because of the lack of sym-
metry) if the data is graphically presented. We argue that there are so many different
ways of how semiotic-conceptual analyses can be used that it is not feasible to write

5 These days the notion ‘relational concept analysis’ is used in a different meaning by other
authors.

6 https://wordnet.princeton.edu/



human
body part

structure

external
body part extremity,

appendage

animal

leg

toenailfingernail

nail

finger toe

digit

hand foot

extremity

arm

limb

Fig. 4. Representamens showing a part-whole relation

algorithms for any possible situation. In many cases the data can be modelled for an
application and then interactively investigated.

In Figure 4, the representamens are instances of a binary relation or pairs of deno-
tations. Thus there are no intrinsic differences between what is a representamen, deno-
tation or interpretation. Denotations are often represented by strings and thus are signs
themselves (with respect to another semiotic relation). A computer program as a whole
can also be a representamen. Since that is then a single representamen, the relation
between the program output (its denotations) and the succession of states (its interpre-
tations) is then a binary relation. Priss (2004) shows an example of a concept lattice for
such a relation.

6 Conclusion and outlook

This paper presents a semiotic-conceptual analysis that models the three components
of a Peircean semiotic relation as concept lattices which are connected via a semiotic
mapping. The paper shows that the formalisation of such a semiotic-conceptual analysis
provides a unified framework for a number of our previous FCA applications (Priss,
1998-2004). It also presents another view on Wolff’s (2004) animated concept lattices.

But this paper only describes a starting point for this kind of modelling. Instead
of considering one semiotic system with sets R, D, I , one could also consider several
semiotic systems with sets R1, D1, I1 and so on as subsets of larger sets R, D, I . Then
one could investigate what happens if, for example, the signs from one semiotic system
become the representamens, interpretations or denotations of another semiotic system.



For example, in the second half of Peirce’s sign definition in Section 1 he suggests
that for i1(r) = d there should be an i2 with i2(i1) = d. Furthermore one could
consider a denotation lattice as a channel between different representamen lattices in
the terminology of Barwise & Seligman’s (1997) information flow theory as briefly
mentioned in Section 5 which also poses some other open questions.

There are connections with existing formalisms (for example model-theoretic se-
mantics) that need further exploration. In some sense a semiotic-conceptual analy-
sis subsumes syntactic relationships (among representamens), semantic relationships
(among denotations) and pragmatic relationships (among interpretations) in one for-
malisation. Other forms of semiotic analyses which use the definitions from Section 2
and 4 but use other structures than concept lattices (as suggested in Section 3) are pos-
sible as well. Hopefully future research will address such questions and continue this
work.

References

1. Barwise, Jon; Seligman, Jerry (1997). Information Flow. The Logic of Distributed Systems.
Cambridge University Press.

2. Belohlavek, Radim; Osicka, Petr (2012). Triadic concept lattices of data with graded at-
tributes. International Journal of General Systems 41.2, p. 93-108.

3. Ganter, Bernhard; Wille, Rudolf (1999). Formal Concept Analysis. Mathematical Founda-
tions. Berlin-Heidelberg-New York: Springer.

4. Gnatyshak, Dmitry; Ignatov, Dmitry; Kuznetsov, Sergei O. (2013). From Triadic FCA to Tri-
clustering: Experimental Comparison of Some Triclustering Algorithms. CLA. Vol. 1062.

5. Goguen, Joseph (1999). An introduction to algebraic semiotics, with application to user in-
terface design. Computation for metaphors, analogy, and agents. Springer Berlin Heidelberg,
p. 242-291.

6. Priss, Uta (1998). The Formalization of WordNet by Methods of Relational Concept Analysis.
In: Fellbaum, Christiane (ed.), WordNet: An Electronic Lexical Database and Some of its
Applications, MIT press, p. 179-196.

7. Priss, Uta (1999). Efficient Implementation of Semantic Relations in Lexical Databases. Com-
putational Intelligence, Vol. 15, 1, p. 79-87.

8. Priss, Uta (2000). Lattice-based Information Retrieval. Knowledge Organization, Vol. 27, 3,
p. 132-142.

9. Priss, Uta (2004). Signs and Formal Concepts. In: Eklund (ed.), Concept Lattices: Second
International Conference on Formal Concept Analysis, Springer Verlag, LNCS 2961, 2004, p.
28-38.

10. Maddux, Roger D. (1991). The origin of relation algebras in the development and axiomati-
zation of the calculus of relations. Studia Logica 50, 3-4, p. 421-455.

11. Marty, Robert (1992). Foliated semantic networks: concepts, facts, qualities. Computers &
mathematics with applications 23.6, p. 679-696.

12. Wolff, Karl Erich (2004). Towards a conceptual theory of indistinguishable objects. Concept
Lattices. Springer Berlin Heidelberg, p. 180-188.

13. Zalamea, Fernando (2010). Towards a Complex Variable Interpretation of Peirces Existential
Graphs. In: Bergman, M., Paavola, S., Pietarinen, A.-V., & Rydenfelt, H. (Eds.). Ideas in
Action: Proceedings of the Applying Peirce Conference, p. 277-287.


