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Abstract. Semiotic-Conceptual Analysis (SCA) considers diagrams (and in gen-
eral any signs) as consisting of representamens, denotations and interpretations
which supports investigating these three components individually and jointly. A
core notion for diagram research is “observability” which refers to logically valid
statements that can be visually extracted from diagrams. This notion is included
into the SCA vocabulary and discussed with respect to Euler and Hasse diagrams.

1 Introduction

Semiotic-Conceptual Analysis (SCA) is inspired by the theory of semiotics of the
American philosopher Charles S. Peirce and uses some of his terminology [2]. SCA
notions, however, are mathematically defined and thus, in some sense, more abstract
than their philosophical counterparts. The purpose of SCA is to investigate questions
of what and how something is represented and why certain representations have advan-
tages over others under some circumstances. As an example, SCA is applied to Euler
and Hasse diagrams in this short paper. Def. 1 summarises the core definitions of SCA.
Further detail cannot be provided here and is presented by Priss [2].

Definition 1. For a set R (called representamens), a set D (called denotations) and a
set I of partial functions i : R 7→ D (called interpretations) a semiotic relation S is a
relation S ⊆ I ×R×D. A triple (i, r, d) ∈ S with i(r) = d is called a sign.
For a semiotic relation S with a tolerance relation ∼D, a tolerance relation ∼D∩R, an
equivalence relation ≈R and a partial function f : R 7→ D:
• (i1, r1, d1) and (i2, r2, d2) are synonyms⇐⇒ d1 ∼D d2;
• (i1, r1, d1) and (i2, r2, d2) are polysemous⇐⇒ r1 ≈R r2 and d1 ∼D d2;
• (i, r, d) ∈ S is an icon⇐⇒ r ∼D∩R d (i.e., describable by a unary relation)
• (i, r, d) ∈ S is an index⇐⇒ f(r) = d (i.e., describable by a binary relation)
• (i, r, d) ∈ S is a symbol⇔ (i, r, d) is neither icon nor index.

Representamens are physical representations of signs. Denotations are meanings of
signs and in SCA presented as formalised concepts. Interpretations usually encode a
context (time and place) of when a sign is used and possibly further information about
a sign producer. A tolerance relation is a mathematical expression of similarity. An
example of f would be an algorithm for calculating d from r, instead of a relationship
between representamens and denotations that changes with every interpretation.



Several (partial ordering) relations can be defined for signs, for example, implica-
tions (based on logical implications amongst denotations) and observations (derived
from compound representamens). For a sign a to be observable from a sign b, the rep-
resentamen of a has to be derivable from the representamen of b by using some kind of
visual algorithm or visual moves. Observability was motivated by Stapleton et al.’s def-
inition [4]. Ideally, only logically true statements should be observed, thus if a sign a is
an observation from a sign b then b =⇒ a should hold. Translations amongst signs are
morphisms that should preserve meaning in some form. They can lead to translational
loss or gain because, for example, denotations can be modelled using different concep-
tual models and signs with equivalent denotations can produce different observations.

SCA starts with a qualitative framework (as in Section 2) that roughly characterises
how these notions apply to an example. It then continues with more detailed formal
analyses, in particular with respect to observations and translations. Both of which are
only sketched in this short paper.

2 Applying the SCA Framework to Venn and Euler diagrams

Venn and Euler diagrams are a means for graphically representing sets and their inter-
sections and unions. A more detailed introduction is, for example, provided by Rodgers
[3]. Venn diagrams show all possible intersections for a set of sets. Euler diagrams are
similar to Venn diagrams but exclude zones which are known to be empty. The fol-
lowing terminology applies to Venn and Euler diagrams in this paper: Venn and Euler
diagrams consist of closed curves which have labels. Minimal regions are the smallest
areas in a diagram which are surrounded by edges and are not divided further. Regions
are sets of minimal regions. Zones are maximal regions that are within a set of curves
and outwith the remaining curves. Existential import means that zones must correspond
to non-empty sets.

The reason for distinguishing minimal regions and zones is that zones are the small-
est set-theoretically meaningful areas in a diagram whereas minimal regions are the
smallest visible areas in a diagram. In a well-formed Euler diagram, zones correspond
to minimal regions. Further conditions for well-formed Euler diagrams are, for exam-
ple, prohibiting more than 2 curves to cross in a point and curves to intersect themselves.
Formalising and characterising well-formed Euler diagrams is not trivial. Flower, Fish
& Howse [1] present an algorithm for well-formed Euler diagrams and provide a for-
malisation as dual graphs (with zones as sets of labels and edges between adjacent
zones) and superdual graphs (with edges between any two sets of labels that differ by
a single element).

Applying (a very brief) SCA Framework yields the following initial analysis:

Interpretations: relevant choices for types of interpretations are whether existential
import is required (X+) or not (X-) and whether the names of the labels are important
(L+) or the labels can be renamed arbitrarily (L-). Other interpretations are possible,
for example, non-standard interpretations if someone misreads a diagram or sees a
diagram but does not know what it is.



Denotations: a general conceptual model is presented by standard mathematical set
theory and anything that is potentially known about it. A more concrete model for
Euler diagrams might be a mathematical characterisation of well-formed diagrams.

Representamens: a Venn or Euler diagram is a compound sign. Diagrams can be
considered equivalent representamens if a reversible visual translation exists between
them. In particular, a translation must preserve existential import conditions in the case
of X+ and labels in the case of L+.

Synonymy: one can investigate whether one synonym is “better” than another because
it provides more observations or is well-formed or calculate how many synonyms are
possible under certain conditions.

Polysemy: one can investigate how diagrams are affected by changing the interpreta-
tion, for example, from X+ to X- or by assigning actual elements to the sets.

Icons: depend on personal preferences and historical, cultural background. Presum-
ably, the containment and intersection of circles is considered similar to set operations.

Indices: for example, dual graphs can be considered closely indexically related to Venn
and Euler diagrams because they can be easily algorithmically determined.

Translations: Many translations are possible, for example using set-theoretic expres-
sions with labels and {∩,∪,⊆,=}; dual or superdual graphs, partially ordered sets of
zones, or conjunctive normal forms.

Translational loss and gain: for example, the actual positions and shapes of the curves
are not considered relevant and omitted in translations. Different translations invoke
different conceptual models which may add background information.

3 Observability of Euler and Hasse diagrams

Stapleton et al. [4] argue that while many expressions may be implied by a set-theoretic
expression, only the expression itself is observable from a set-theoretic expression.
They conclude that Euler diagrams have a maximal observational advantage over set-
theoretic expressions because all logically valid statements can be observed from them.
An example is presented by D1 in Fig. 1 which shows that A∩B = ∅ =⇒ C ∩B = ∅.
An alternative to Euler diagrams is provided by Hasse diagrams1 of partially ordered
sets, such as D2 in Fig. 1. The filled nodes in D2 correspond to the zones in D1 (includ-
ing the top node which corresponds to the outer zone). The empty nodes correspond
to empty sets. In many cases the Hasse diagram without the empty nodes and ignoring
the ordering is isomorphic to the superdual graph of an Euler diagram. They are not
isomorphic if the Hasse diagram contains edges between nodes that differ in more than
one label, which implies a non-well-formed Euler diagram.

In D2, the highest shared node below a set of nodes presents an intersection (e.g. A∩
B). Containment amongst sets corresponds to following upwards edges (e.g. C ⊆ A)
whereas implications amongst empty sets corresponds to following downwards edges
(e.g. A ∩ B = ∅ =⇒ C ∩ B = ∅). One can argue that D2 has an observational advan-
tage over D1 because one can additionally count how many implications are possible.
Users, however, will most likely find D1 more intuitive to read, and more iconic for set

1 SCA normally uses Hasse diagrams of lattices in the sense of Formal Concept Analysis but
because of space limitations only partially ordered sets are discussed here.



containment, than D2. D1 also conveys a feeling of understanding of why an implica-
tion exists: it is physically impossible in a 2-dimensional space for C to get out of its
container A and anywhere near B. Because of the physical constraints, changing D1
so that (A \ C) ∩ B = ∅ but C ∩ B 6= ∅ cannot be presented as a well-formed Euler
diagram. In D2, however, it would be possible to fill in the bottom node. In that case
empty nodes would only indicate that the set at that node is empty. Thus, Hasse dia-
grams can express any constellation of sets (the same as Venn diagrams with shading)
whereas well-formed Euler diagrams with existential import cannot.
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Fig. 1. Euler and Hasse Diagrams

We are proposing that even some mathematical expressions can lead to more than
one observation. For example, we would argue that the mathematical expression A ⊆
B ⊆ C allows the same observations as D3 if one knows the convention of abbreviating
transitive operations in that manner. D4 displays logical statements and their conjunc-
tions instead of sets and intersections as in D3. It contains an empty node because of
A ⊆ B,B ⊆ C ⇐⇒ A ⊆ B ⊆ C. We would argue that while these two statements are
logically equivalent, with respect to observations they are different.

The purpose of SCA is to provide a vocabulary that facilitates, for example, an
investigation of why and how mathematically equivalent signs provide different ob-
servations. Apart from the basic definitions of SCA, it is not intended to develop new
formalisms but, instead, to incorporate existing ones and combine them with a semi-
otic perspective. SCA is not restricted to mathematical applications because it can also
be used for analysing natural or other formal languages [2]. This paper gives rise to
questions about further relationships between well-formed Euler diagrams and partially
ordered sets (or lattices) which will be addressed in a future publication.
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