
Signs and Formal Concepts?

Uta Priss

School of Computing, Napier University,u.priss@napier.ac.uk

1 Introduction

In this paper we propose a semiotic conceptual framework which is compatible with
Peirce’s definition of signs and uses formal concept analysis for its conceptual struc-
tures. The goal of our research is to improve the use of formal languages such as on-
tology languages and programming languages. Even though there exist a myriad of
theories, models and implementations of formal languages, in practice it is often not
clear which strategies to use. AI ontology language research is in danger of repeating
mistakes that have already been studied in other disciplines (such as linguistics and
library science) years ago.

Just to give an example of existing inefficiencies: Prechelt (2000) compares the
implementations of the same program in different programming languages. In an ex-
periment he asked programmers of different languages to write a program for a certain
problem. All programmers of so-called scripting languages (Perl, Python, Tcl) used
associative arrays as the main data structure for their solution, which resulted in very
efficient code. C++ and Java programmers did not use associative arrays but instead
manually designed suitable data structures, which in many cases were not very ef-
ficient. In scripting languages associative arrays are very commonly used and every
student of such languages is usually taught how to use them. In Java and C++, associa-
tive arrays are available via the class hierarchy, but not many programmers know about
them. Therefore scripting languages performed better in the experiment simply because
programmers of Java and C++ were not able to find available, efficient data structures
within the large class libraries of these languages. Of course, this does not imply that
scripting languages always perform better, but in some cases apparently large class li-
braries can be a hindrance.

These kinds of problems indicate that the challenges of computing nowadays lie fre-
quently in the area of information management. A semiotic-conceptual framework as
proposed in this paper views formal languages within a system of information manage-
ment tasks. More specifically, it identifies management tasks relating to names (names-
paces), contexts and (object) identifiers as the three contributing factors. These three
management tasks correspond to the three components of a sign: representation, con-
text and denotation.

It has been shown in the area of software engineering that formal concept analysis
can be used for such information management tasks (Snelting, 1995). Snelting uses for-
mal concept analysis for managing the dependencies of variables within legacy code.

? This is a preprint of a paper published in Eklund (ed.), Concept Lattices: Second International
Conference on Formal Concept Analysis, Springer Verlag, LNCS 2961, 2004, p. 28-38.
c©Springer Verlag.



But we argue that it is not obvious how to connect the three different areas of man-
agement tasks to each other if considering only conceptual structures, because sign use
involves semiotic aspects in addition to conceptual structures. The semiotic conceptual
framework described in this paper facilitates a formal description of semiotic aspects
of formal languages. It predicts the roles which conceptual and semiotic aspects play
in formal languages. This is illustrated in a few examples in section 8 of this paper. It
should be pointed out, however, that this research is still in its beginnings. We have not
yet explored the full potential of applications of this semiotic conceptual framework.

2 The difference between signs and mathematical entities

A semiotic conceptual framework contrasts signs with mathematical entities. The vari-
ables in formal logic and mathematics are mathematical entities because they are fully
described by rules, axioms and grammars. Programmers might think of mathematical
entities as “strings”, which have no other meaning apart from their functioning as place
holders. Variables in declarative programming languages are richer entities than strings
because they have a name, a data type and a value (or state) which depends on the time
and context of the program when it is executed. These variables are modelled as signs
in a semiotic conceptual framework.

One difference between mathematical entities and signs is the relevance of context.
Mathematics employs global contexts. From a mathematical view, formal contexts in
formal concept analysis are just mathematical entities. The socio-pragmatic context of
an application of formal concept analysis involves signs but extends far beyond for-
mal structures. On the other hand, computer programs are completely formal but their
contexts always have a real-time spatial-temporal component, including the version of
the underlying operating system and the programmer’s intentions. Computer programs
cannot exist without user judgements, whereas mathematical entities are fully defined
independently of a specific user.

Many areas of computing require an explicit handling of contextual aspects of signs.
For example, contextual aspects of databases include transaction logs, recovery rou-
tines, performance tuning, and user support. Programmers often classify these as “error”
or “exception” handling procedures because they appear to distract from the elegant,
logical and deterministic aspects of computer programs. But if one considers elements
of computers as “signs”, which exist in real world contexts, then maybe contextual
aspects can be considered the norm whereas the existence of logical, deterministic, al-
gorithmic aspects is a minor (although very convenient) factor.

3 A semiotic conceptual definition of signs

Peirce (1897) defines a sign as follows: “A sign, or representamen, is something which
stands to somebody for something in some respect or capacity. It addresses somebody,
that is, creates in the mind of that person an equivalent sign, or perhaps a more devel-
oped sign. That sign which it creates I call the interpretant of the first sign. The sign
stands for something, its object.” Our semiotic conceptual framework is based on a
formalisation of this definition, which is described below. To avoid confusion with the



modern meaning of “object” in programming languages, “denotation” is used instead
of “object”.

A representamen is a physical form for communication purposes. Representamens
of formal languages, for example variable names, are considered mathematical entities
in this paper. All allowable operations among representamens are fully described by
the representamen rules of a formal language. Two representamens are equal if their
equality can be mathematically concluded from the representamen rules. For exam-
ple, representamen rules could state that a string “4+1” is different from a string “5”,
whereas for numbers:4 + 1 = 5.

In a semiotic conceptual framework, Peirce’s sign definition is formalised as fol-
lows: A sign is a triadic relation(rmn(s), den(s), ipt(s)) consisting of a representa-
menrmn(s), a denotationden(s) and an interpretantipt(s) whereden(s) andipt(s)
are signs themselves (cf. figure 1). It is sometimes difficult to distinguish between a sign
and its representamen, butrmn(s) is used for the mathematical entity that refers to the
sign ands for the sign itself.

as sign

SIGN

denotation interpretant

contextformal concept

representation

sign

mathematical entity representamen

representamen

Fig. 1.The sign triad

Even though the three components of the sign are written as mappings,rmn(),
den(), ipt(), these mappings only need to be defined with respect to the smallest pos-
sible interpretant which is the sign’s own interpretant at the moment when the sign
is actually used. Further conditions for compatibility among interpretants must be pro-
vided (see below) before triadic sign relations can be considered across several or larger



interpretants. Such compatibility conditions must exist because otherwise signs would
be completely isolated from each other and communication would not be possible.

Interpretants and denotations are signs themselves with respect to other interpre-
tants. But they also relate to mathematical entities. Denotations relate to (formal) con-
cepts. Interpretants relate to contexts, which are in this paper defined as the formalisable
aspects of interpretants. Interpretants contain more information than contexts. Accord-
ing to Peirce, interpretants mediate between representamens and denotations. Therefore
an interpretant or context only needs to contain as much information as is needed for
understanding a sign. Because “a sign, or representamen, is something which stands
to somebody for something in some respect or capacity” (Peirce, 1897), it follows that
signs are not hypothetical but actually exist in the present or have existed in the past.

4 Synonymy and similar sign equivalences

The definition of signs in a semiotic conceptual framework does not guarantee that
representamens are unambiguous and represent exactly one denotation with respect to
one interpretant. Furthermore, the definition does not specify under which conditions
a sign is equal to another sign or even to itself. Conditions for interpretants must be
described which facilitate disambiguation and equality.

A setI of n interpretants,i1, i2, ..., in, is called overlapping iff

∀a, 1≤a≤n∃b, 1≤b≤n,b 6=a∃s : ia → s, ib → s (1)

wheres denotes a sign. The arrow relation “→” is called “representation” and is the
same as in figure 1. This relation is central to Peirce’s definition of signs but shall not
be further discussed in this paper.

With respect to a setI of overlapping interpretants, any equivalence relation can be
called synonymy, denoted by≡I , if the following necessary condition is fulfilled for all
signs represented by interpretants inI:

(rmn(s1), den(s1), ipt(s1)) ≡I (rmn(s2), den(s2), ipt(s2)) =⇒ (2)

s1 → den(s2), s2 → den(s1), den(s1) ≡I den(s2)

Only a necessary but not sufficient condition is provided for synonymy because it
depends on user judgements. In a programming language, synonymy can be a form
of assignment. If a programmer assigns a variable to be a pointer (or reference) to
another variable’s value, then these two variables are synonyms. Denotational equality
is usually not required for synonymous variables because values can change over time.
For example two variables, “counter := 5” and “age := 5”, are not synonymous just
because they have the same value. Because synonymy is an equivalence relation, signs
are synonymous to themselves.

A further condition for interpretants ensures disambiguation of representamens: A
setI of overlapping interpretants is called compatible iff

∀i1,i2∈I∀s1,s2 : (i1 → s1, i2 → s2, rmn(s1) = rmn(s2) =⇒ s1 ≡I s2) (3)



In the rest of this paper, all single interpretants are always assumed to be compatible
with themselves. Compatibility between interpretants can always be achieved by re-
naming of signs, for example, by adding a prefix or suffix to a sign.

The following other equivalences are defined for signs in a setI of compatible
interpretants:

identity:s1 �I s2 :⇐⇒ id(s1) = id(s2), s1 ≡I s2 (4)

polysemy:s1
.=I s2 :⇐⇒ rmn(s1) = rmn(s2) (5)

equality:s1 =I s2 :⇐⇒ den(s1) =I den(s2), rmn(s1) = rmn(s2) (6)

equinymy:s1
∼=I s2 =⇒ den(s1) =I den(s2), s1 ≡I s2 (7)

s1
∼=I s2 ⇐= s1 =I s2

Identity refers to what is called “object identifiers” in object-oriented languages
whereas equinymy is a form of value equality. For example, in a program sequence, “age
:= 5, counter := 5, age := 6”, the variables “age” and “counter” are initially equal. But
“age” is identical to itself even though it changes its value. Identity is implemented via a
setI of mathematical entities. The elements ofI are called identifiers. A mappingid()
maps a sign onto an identifier or onto NULL if the sign does not have an identifier. It
should be required that if two signs are equal and one of them has an identifier then both
signs are also identical. The only operation or relation that is available for identifiers is
“=”. In contrast to synonymy which is asserted by users, object-oriented programming
languages and databases have rules for when and how to create “object identifiers”.

Because the relations in (4)-(7) are equivalence relations, signs are identical, poly-
semous, equinymous and equal to themselves. In (5) polysemy is defined with respect
to equal representamens but only in compatible interpretants. Signs with equal rep-
resentamens across non-compatible interpretants are often called “homographs”. This
definition of “polysemy” is different from the one in linguistics which does not usually
imply synonymy.

The following statements summarise the implications among the relations in (4)-(7).

s1 � s2 or s1
.=I s2 or s1

∼=I s2 =⇒ s1 ≡I s2 (8)

s1 = s2 ⇐⇒ s1
.=I s2, s1

∼=I s2 (9)

5 Anonymous signs and mergeable interpretants

Two special cases are of interest: anonymous signs and mergeable interpretants. In pro-
gramming languages, anonymous signs are constants. An anonymous sign with respect
to compatible interpretantsI is defined as a sign with

s =I den(s) (10)

An anonymous sign denotes itself and has no other representamen than the repre-
sentamen of its denotation. Signs which are anonymous with respect to one interpretant
need not be anonymous with respect to other interpretants.



The following equations and statements are true for anonymous signss, s1, s2

s =I den(s) =⇒ s =I den(s) =I den(den(s)) =I . . . (11)

s =I den(s) =⇒ rmn(s) = rmn(den(s)) = rmn(den(den(s)) = . . . (12)

s1 =I s2 ⇐⇒ den(s1) =I den(s2) (13)

s1 =I s2 ⇐⇒ s1
∼=I s2 (14)

Statement (14) is true because ofs1
∼= s2 =⇒ den(s1) =I den(s2) =⇒ s1 =I s2.

Thus for anonymous signs equality and equinymy coincide. It is of interest to consider
interpretants in which equinymy and synonymy coincide. That means that synonyms
have equal instead of just synonymous denotations. This leads to the next definition:

A setI of compatible interpretants is called mergeable iff for all signs inI

s1 ≡I s2 =⇒ s1
∼=I s2 (15)

which means that all of its synonyms are equinyms. If an interpretant is not mergeable
with itself it can usually be split into several different interpretants which are mergeable
with themselves. In mergeable interpretants, it follows that

s1 =I s2 ⇐⇒ s1
.=I s2 =⇒ s1

∼=I s2 ⇐⇒ s1 ≡I s2 (16)

s1 =I s2 ⇐⇒ rmn(s1) = rmn(s2) (17)

becausermn(s1) = rmn(s2) =⇒ dmn(s1) ≡I dmn(s2) =⇒ dmn(s1)
.=I dmn(s2).

From (14) and (16) it follows that for anonymous signs in mergeable interpretants,
the four equivalences, synonymy, polysemy, equality and equinymy are all the same.
For anonymous signs in a mergeable interpretant, the representamen rules alone de-
termine synonymy. Because representamens are mathematical entities, it follows that
anonymous signs in mergeable interpretants behave like mathematical entities.

6 Conceptual structures

While semiotic structures, such as synonymy, model the decisions a user makes with
respect to a formal language, mathematical entities can be used to compute the con-
sequences of such decisions. It is argued in this paper that the mathematical entities
involved in signs (especially formal concepts and contexts) can be modelled as con-
ceptual structures using formal concept analysis. Concept lattices can be used to show
the consequences of the semiotic design decisions. Users can browse through concept
lattices using a variety of existing software tools to explore the signs.

This insight is not new. In fact there are several papers, (for example, Snelting
(1996)) which demonstrate the usefulness of formal concept analysis in software engi-
neering. Our semiotic conceptual framework adds a layer of explanation to these studies
by detailing how semiotic and conceptual aspects both contribute to formal languages.
A semiotic perspective also adds modes of communication or “speech acts” to the con-
ceptual framework. Examples are “assertion”, “query” and “question”. But these are
not further discussed in this paper.



Formal concept analysis, description logics, Sowa’s (1984) conceptual graphs, Bar-
wise & Seligman’s (1997) classifications and object-oriented formalisms each pro-
vide a slightly different definition of concepts. But they all model denotations as bi-
nary relations of types and instances/values. Thus denotations are signs of the form
[typ(s) : ins(s)] wheretyp(s) is a sign called type andins(s) is a sign called instance
(or value). A signs with den(s) ∼=I [typ(s) : ins(s)] is written ass[typ(s) : ins(s)]. A
formal concept is an anonymous signc =I ({e1, e2, . . .}; {i1, i2, . . .}) wheree1, e2, . . .
are mathematical entities that form the extension andi1, i2, . . . are mathematical entities
that form the intension of the formal sign.

For a fixed interpretant, denotations are mapped onto formal concepts as follows:
the intension is the set of types that are inherited by the sign via a type hierarchy and
the extension is the set of instances that share exactly those types. As a restriction it
should be required that each sign is synonymous to at most one formal concept within
the given interpretant. Within the framework of formal concepts, equality of denotations
can be mathematically evaluated because formal concepts are anonymous signs. Formal
concepts as defined in this paper form concept lattices as defined in formal concept
analysis.

7 Contexts and meta-constructs

Several formalisms for contexts have been suggested by AI researchers (eg. McCarthy
(1993)) but in general they are not integrated into reasoning applications as frequently
and not as well understood as representamens and formal concepts. Figure 1 indicates
that contexts should play an important role in the formalisation of signs besides repre-
sentamens and formal concepts. We argue in this paper, that contexts are not as difficult
to deal with as AI research suggests if they are modelled as formal concepts as well.

If contexts are modelled as formal concepts, relationships between contexts, such
as containment, temporal and spatial adjacency or overlap can be modelled as concep-
tual relations. Contexts as formal concepts are denotations of other signs with respect
to other interpretants. Peirce stresses the existence of infinite chains of interpretants
(interpretants of interpretants of interpretants ...). But as formal concepts, contexts are
not modelled as contexts of contexts of contexts. All contexts can be modelled as for-
mal concepts with respect to one special meta-context of contexts because containment
chains are just conceptual relations, not meta-relations.

An advantage of this approach is that apart from one meta-language which de-
scribes the semiotic conceptual framework, no other meta-languages are required. All
other seemingly “meta”-languages are modelled via conceptual containment relations
between their corresponding contexts. For example, all facts, rules and constructors of
a programming language can be described in a single context. A program of that lan-
guage is executed in a different context. Both contexts are related via a containment
relation with respect to the meta-context of contexts. But the context of a programming
language is not a meta-context of a program.



8 Examples

The condition of mergeability of interpretants states that synonymous signs must have
equal denotations. With respect to programming languages this means that as soon as
a variable changes its value, a new interpretant must be formed. It may be possible to
bundle sequential changes of values. For example, if all values in an array are updated
sequentially, it may be sufficient to assume one interpretant before the changes and one
after the changes instead of forming a separate interpretant after each change. Some
variables may also be ignored, such as counters in for-statements. This corresponds to
the distinction between persistent and transient objects in object-oriented modelling.
Transient variables do not initiate new interpretants.

The significance of the following examples is not that this is just another applica-
tion of formal concept analysis but instead that this kind of analysis is suggested by
the semiotic conceptual framework. The theory about mergeability of interpretants sug-
gests that a number of different interpretants are invoked by any computer program
depending on when certain variables change their values. It just happens that formal
concept analysis can be used to analyse this data. We believe that careful consideration
of the predictions made by the semiotic conceptual framework can potentially provide
interesting insights. But we have not yet explored this further.

The example in figure 2 shows a piece of Python code and a corresponding concept
lattice in figure 3. The contexts (or formalisable parts of interpretants) are initiated by
the changes of the variables “counter” and “number”. Each context produces a different
behaviour, i.e., a different print statement by the program. The lattice in figure 3 is
modelled as follows: the objects are the observable behaviours of the program (i.e.,
the print statements). The attributes are the states of the variables which are relevant
for the contexts. The formal concepts are contexts of the program. If the counter is
smaller than 5 and the user guesses the number 5, the program prints “good guess”. If
the number is not 5 but the counter is smaller than 5, the program prints “try again” and
“please guess”, except in the first instance (counter =1) when it prints “please guess”
after having printed “game starts”. If the counter is larger than 5 the game prints “game
over”.

In contrast to flowcharts, the lattice representation does not represent the sequence
of the statements. Wolff & Yameogo’s (2003) temporal concept analysis could be ap-
plied to the lattice to insert the temporal sequence. The lattice shows the relationships
among the contexts. For example, it shows that the start-context (counter = 1) and the
contexts in which the wrong number was guessed share behaviour. This is not neces-
sarily clearly expressed in the code itself. In fact our experience with teaching scripting
languages to non-programmers has shown that students often have a problem compre-
hending where the ’print “please guess”’ statement needs to be placed within the while
loop so that it pertains to both the first iteration and to some of the later iterations. In
the lattice this relationship is shown more clearly.

It should be noted that we have not yet tested whether students can read the lattices.
But we are not suggesting that lattices must be used directly as a software engineering
tool. The information contained in the lattice could be displayed in a different format,
which would still need to be determined. We have also not yet determined in how far



break

if number == 5:

print "good guess"

while counter <= 5:

number = input("please guess the number")

counter = 1

print "game starts"

else: 

print "try again"

counter = counter +1

else:

print "game over"

Fig. 2.A piece of Python code

counter <= 5

game starts try again good guess game over

please guess

counter = 1 number != 5 number = 5 counter > 5

Fig. 3.A lattice of contexts for the code in figure 2



such lattices can be automatically generated from code. We intend to investigate this
further in the near future.

The second example, which was taken from Ballentyne (1992) demonstrates the
equivalence of Warnier diagrams (Orr, 1977) and concept lattices. The original data is
shown in the upper left table in figure 4 and to be read as follows: action 1 has four
crosses which correspond to the conditionsA,¬B,¬C or A,¬B,C or A,B,¬C or
A,B,C. This is equivalent to conditionA implying action 1. Therefore in the formal
context on the left there is a cross for A and 1. Action 2 is conditioned by¬A andB
which is visible both in the left table and in the formal context. After the whole context
has been constructed in that manner, a second condition is to be considered which is
that A and¬A and so on must exclude each other. This is true forA andB but ¬C
does not have any attributes and must be excluded from the lattice. A third condition
is that any meet irreducible concepts in the lattice must not be labelled by an attribute
because otherwise that attribute would be implied by other attributes without serving
as a condition itself. For this reason, the temporary attributet is inserted. The resulting
lattice can be read in the same manner as the one in figure 3. The Warnier diagram
corresponds to a set of paths from the top to the bottom of the lattice which cover all
concepts. Obviously, there can be different Warnier diagrams corresponding to the same
lattice.

9 Conclusion

A semiotic conceptual framework for formal languages combines conceptual reasoning
and inference structures with semiotic modes, such as assertion, question and query. By
considering the denotations of formal signs as formal concepts, structure is imposed.
Because denotations are both signs and can be mapped to formal concepts which are
mathematical entities, denotations serve as boundary objects (Star, 1989) between the
mathematical world and the pragmatic world of signs. The role of contexts is often
neglected. This is understandable in mathematical applications because mathematical
entities exist in more global contexts. But in other formal languages, which employ
richer signs, contexts are frequently changing and cannot be ignored. If contexts are
modelled as formal concepts, it is not necessary to invent any new structures but instead
the mechanisms of formal concept analysis can also be applied to contexts. Contexts
provide a means for managing signs and sign relations. Programming languages and
databases already fulfill these functions, but so far not much theory has been devel-
oped which explains the theoretical foundations of context management. A semiotic
conceptual framework can provide such a theory.

References

1. Ballentyne, George (1992). Class notes. Unpublished manuscript.
2. Barwise, Jon; Seligman, Jerry (1997).Information Flow.The Logic of Distributed Systems.

Cambridge University Press.
3. Ganter, B.; Wille, R. (1999).Formal Concept Analysis.Mathematical Foundations. Berlin-

Heidelberg-New York: Springer, Berlin-Heidelberg.



Concept lattice

Actions

O O O

O O 1

O 1 O

O 1 1

1 O 1

1 1 O

1 1 1

1 O O

x

x

x

x

x

x

x

x

x

x

x

xx

x

x x

x

Conditions 

A B C 1 2 3 4 5 6

B: 5

not B: 4 A: 1

not A: 2

A: 6, 1

C: 3

notA; −−
not C: −−

Condition/action list

Warnier diagram

1 2 3 4 5 6

A

B

not A

not B

not C

C

x x x

xxx

x

x

x x

x

x

t

Corresponding formal context

not B

not A

B A

5 4 1

62

3

C

t

Fig. 4.Warnier diagrams and lattices



4. McCarthy, John (1993).Notes on Formalizing Context.Proceedings of the 13th International
Joint Conference on Artificial Intelligence. Chambery, France. p. 555-560.

5. Orr, K. T. (1977).Structured Systems Development.Yourdon Press, New York.
6. Peirce, Charles (1897).A Fragment.CP 2.228. In: Collected papers. Hartshorne & Weiss.

(Eds. Vol 1-6); Burks (Ed. Vol 7-8), Cambridge, Harvard University Press, 1958-1966.
7. Prechelt, Lutz (2000).An empirical comparison of C, C++, Java, Perl, Python, Rexx, and

TCL. IEEE Computer, 33(10), p. 23-29.
8. Snelting, Gregor (1995).Reengineering of Configurations Based on Mathematical Concept

Analysis.ACM Transactions on Software Engineering and Methodology 5, 2, p. 99-110.
9. Sowa, J. (1984).Conceptual Structures: Information Processing in Mind and Machine.

Addison-Wesley, Reading, MA.
10. Star, Susan Leigh (1989).The structure of ill-structured solutions: Boundary objects and

heterogeneous problem-solving.In: Gasser & Huhns (Eds). Distributed Artificial Intelligence,
Vol 2, Pirman, p. 37-54.

11. Wolff, Karl Erich; Yameogo, Wendsomde (2003).Time Dimension, Objects, and Life Tracks.
A Conceptual Analysis.In: de Moor; Lex; Ganter (Eds.). Conceptual Structures for Knowledge
Creation and Communication. Lecture notes in Ai 2746. Springer Verlag.


