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Abstract. In several fields there is a divide between formal and associative mod-
els of concepts and reasoning. For example, in AI associative models such as
neural networks and evolutionary computation are distinguished from symbolic,
logic-based approaches. In psychology, fuzzy or category-based approaches com-
pete with the “classical” theory of classification. In information science, systems
based on dynamic, emergent structures can be distinguished from formal, man-
ually designed structures. This paper argues that both modes of representation,
formal and associative ones, need to be considered simultaneously for knowledge
representation systems. This paper investigates the relationship between formal
and associative structures and provides suggestions for bridging the gap between
the two modes of representation.

1 Introduction

In many disciplines there is a dichotomy between formal and associative structures
[19]. In psychology, Sloman [24], Pinker [18] and others have argued that there is evi-
dence to support at least two co-existing systems of reasoning: an associative one and
a rule-based (or formal) one. In AI, there is a divide between biologically inspired (i.e.
associative) and logical-symbolical (i.e. formal) approaches. In cognitive science and
linguistics, a “classical” formal model of concepts (which is sometimes called “Aris-
totelian” but that is misleading because Aristotle proposed different models) competes
with a fuzzy, prototype-based model that can be traced back to Wittgenstein [28] and
Rosch [22]. In information science, traditional, formal approaches led to the construc-
tion of information access systems such as library catalogs and web directories, for
example, Yahoo!. Associative approaches in that field led, for example, to the search
engine Google, which is not based on neural networks or fuzzy logic but is associative
because of its dynamic reliance on the networking character of the WWW. In biology,
the Whewell versus Mill debate focused on whether biological classes are prototype-
based or can be defined using necessary and sufficient features (cf. [25], Chapter 6). The
distinction between “formal” and “associative” is also similar to Wille’s [26] distinction
between “mathematical” and “logical”. One might consider the traditional distinction
between “light as waves” and “light as particles” in physics as an example of the same
divide. In physics both are nowadays combined into one model in quantum mechanics.
But in some other disciplines, researchers still debate whether ultimately both models
can or should be combined and how.

In AI, artificial neural networks and evolutionary programming simulate associa-
tive cognitive abilities, such as stimulus generalization based on similarity and ana-
logical reasoning, and evolutionary development in complex dynamic systems. Deacon



[7] provides a good overview of these models with respect to the neurophysiology of
the human brain and the co-evolution of language and the human brain. A number of
small-scale simulations have been developed that demonstrate the applicability of arti-
ficial neural networks to associative cognitive tasks, for example, Shastri’s [23] model
of rapid memory formation or Regier et al.’s [21] model of word/meaning associations.
While these models successfully simulate isolated cognitive functions, it is not clear
how these systems could scale up to automatically generate higher level cognitive abil-
ities, such as logical reasoning and abstraction.

At the other extreme in AI are logic programming, rule-based expert systems and
formal ontologies, such as Lenat’s CYC [6]. These systems can easily represent ab-
stract formal processes but even after 20 years of manual labor, CYC is still far from
simulating the knowledge and intelligence of just a small child. To achieve artificial
intelligence that is closer to human intelligence, perceptive interfaces may need to be
connected both to low-level, associative neural networks but also to high-level, formal
knowledge repositories, such as CYC.

It should be noted that the distinction between associative and formal structures
made in this paper is essentially identical to Deacon’s [7] distinction between indicative
and symbolic representations or animal calls and human language, respectively. Thus
Deacon’s observations about the systematic character of language and the co-evolution
of brain and language also apply to formal structures. But his book has one shortcoming
in that he uses only one dimension (the sign dimension) with three classes in his struc-
tural analysis of indicative versus symbolic. This paper uses three dimensions (sign, ob-
ject, internal representation) which result in ten combined classes and provide a larger
set of differentiating criteria. For example, if only one dimension is used, it is difficult
to explain why some animal behavior is more indicative, such as running away in fear,
whereas other behavior is more symbolic or habitual, such as the nuances in dog bark-
ing that show habitually evolved meaning differences. Using three dimensions, it can
be stated that running away and barking are different with respect to the sign dimension
but equal with respect to the other two dimensions (see below). Similarly, barking and
human language are equal with respect to one dimension and different with respect to
the other two dimensions.

Section 2 of this paper describes the differences between associative and formal
concepts. Section 3 develops a ten-fold classification of concepts that serves as a model
for describing some of the features of and processes related to associative and formal
concepts. Section 4 establishes some of the steps involved in the combination of formal
and associative concepts which yield feedback loops that can explain the exponential
difference in the conceptual abilities between the cognition of humans and other ani-
mals. The last section of this paper provides a brief sketch of possible applications of
formal and associative concepts in ontologies and lexical databases.

2 The differences between associative and formal concepts

Associative reasoning is grounded in a close connection of the individual’s interaction
with an external world. Clark [4] explains that humans do not have a complete model of
the external world in their minds. Instead, our world model is continuously updated and



completed by perceptual input. Because of their connection to an external world, asso-
ciative concepts and contexts contain a significant depth of detail. But they are usually
restricted to a very narrow segment of time, space and culture. Both associative con-
cepts and contexts are what Lenat [13] calls “rich objects”. That means they are infinite
and rich in detail and cannot be completely described. For example, an utterance such
as “birds fly” can invoke detailed visual representations of prototypical birds engaged
in a prototypical activity in a speakers mind. But the utterance is usually not meant to be
interpreted in a formal manner implying that all birds in some abstract, global context
have the ability to fly.

Formal concepts, which are defined with respect to formal contexts, on the other
hand, are somewhat abstracted from an external world. Wille [26] states based on Peirce
that “mathematical thinking abstracts logical thinking with its basic forms of thought for
hypothetically developing a cosmos of forms for potential realities”. Formal thinking
thus facilitates contemplating hypothetical situations. Lakoff & Johnson’s [15] claim
that all human philosophy has been shaped by our bodily experiences suggests that
even formal thinking is on some level motivated by an external world. But Deacon
[7] (p.87) explains that even though formal structures as a whole built on associative
structures, formal structures form a system based on their internal connections which
are stronger than their connections to associative structures. Because of their abstract
nature, formal concepts and contexts tend to be more shallow or less detailed in their
internal structures than associative concepts. But formal contexts also tend to be more
globally defined than associative contexts because they depend less or not at all on tem-
poral, spatial and cultural constraints. For example, while there is a historical context
in which mathematical objects were first invented, their mathematical properties do not
usually depend on that external, historical context.

In addition to hypothetical situations, formal concepts can represent objects that are
recursive or on a meta-level. While it is not possible to imagine such objects purely in an
associative manner, formal concepts themselves give rise to associations. For example,
initially unicorns are defined formally because they do not exist. But people associate
properties and images with unicorns. From a psychological viewpoint, unicorns can be
represented in the human mind in the same manner as horses. This can even be true for
mathematical objects. Devlin [8] states that although the objects of mathematics are for-
mal, mathematicians tend to think about these formal objects in an associative manner.
Formal and associative modes of thinking are thus highly intertwined in human cogni-
tion. In fact the connection between associative and formal structures may be one of the
driving forces for human cognition. This connection is multi-functional and complex in
design; has evolved over time; and may contain multi-level connections and feedback
loops between the associative and formal processes.

2.1 Formal reasoning and cognitive activity

The cognitive activities involved in associative and formal reasoning are different. For-
mal concepts and contexts are evaluated with respect to logical correctness, consistency
and completion. Formal arguments do not require grounding but instead rely on log-
ical inference. According to Ganter & Wille [11] and based on Kant, the three main
cognitive activities of formal thinking are the definition and formalization of formal



concepts (“concepts”), the establishment of consistent relationships between concepts
(“judgments”), and the investigation of entailments that arise from such relationships
(“conclusions”). These encompass much of the current research in knowledge represen-
tation, such as modeling of ontologies and databases (concepts), information retrieval
and database querying (judgments) and logic programming and automated reasoning
(conclusions).

Formal reasoning can be formalized in its entirety. Wille [27] explains that all formal
reasoning, consisting of concepts, judgments and conclusions can be fully described
within a formal framework based on formal concept analysis. Formal reasoning is thus
contained within the formal representations. But, of course, formal reasoning is just
one mode of human reasoning, which normally uses formal and associative aspects
simultaneously.

2.2 Associative reasoning and cognitive activity

Associative concepts and contexts are evaluated with respect to their grounding. A
speaker who uses an associative argument first attempts to establish an associative con-
text within the listener’s mind in which the associative concepts are then embedded.
The listener can understand the speaker’s argument if the new associative structures
fit with structures the listener has already established. The listener is convinced that
the speaker’s argument is sound, if the new associative structures resonate with the lis-
tener’s thinking. It is irrelevant whether the statements are “true” or not. An example
for this difference between associative and formal arguments is the fact that it is pos-
sible to follow the logical structure of a mathematical proof and to be convinced of its
correctness but to still not understand its meaning if the proof does not resonate with
prior knowledge.

Associative reasoning in general employs other cognitive activities than formal rea-
soning. First, associative concepts need to be selected or identified, usually in the form
of patterns or gestalts. While formal concepts are defined and formalized, associative
concepts are selected from an infinite number of possibly interesting gestalts and pat-
terns that arise from interaction with an external world. Artificial neural networks can be
trained to perform this task of identifying associative concepts within limited domains.
Associative concepts cannot be defined using formal concepts or linguistic expressions
but different types of representations can be associated with associative concepts. The
physical form of a representation of an associative concept matters, or, in other words
connotations that are associated with a representation can influence the associative con-
cept itself. Finding an appropriate representation for an associative concept is thus part
of identifying such a concept. This is in contrast to formal concepts, which always must
be represented in a symbolic language but only depend on the formal relations that are
established by the representation not on the forms of individual representations. This is
the reason why mathematics can easily be translated into different languages but poetry
cannot easily be translated.

A second cognitive activity of associative reasoning relates to the transfer and ex-
pansion of conceptual structures. Associative reasoning does not employ logical infer-
ence but instead analogy and metaphors. Hofstadter [9] identifies analogy as “the core



of cognition”. Analogy is not a precise method but instead involves the details and rich-
ness of objects of an external world. Peirce [17] (p. 227) states that “deduction consists
in constructing an icon or diagram [of] the relations [...] whose parts shall present a
complete analogy with those parts of the object of reasoning, of experimenting upon
this image in the imagination, and of observing the result so as to discover unnoticed
and hidden relations among the parts”. His claim is that deduction in human cognition
is not an entirely formal method but contains what is called associative reasoning in
this paper. Associative reasoning in the form of analogy involves the establishment of
relationships between objects and their parts in an external world. Peirce’s view is thus
not so different from the modern view of analogy as structural alignment [12].

There may be fewer formal methods and fields of research devoted to associative
reasoning than to formal reasoning. Related fields are among others artificial neural
networks and evolutionary computation in AI; data mining with its interest in automatic
identification and selection of potential concepts and relationships; and the ancient art
of rhetoric, which includes the study of how to exploit associative arguments.

Human reasoning usually involves both associative and formal methods in combi-
nation because without associative concepts, reasoning would have no ground and no
relationship to an external world. Without formal concepts, reasoning would be lim-
ited to objects within the actual physical environment and their evident features and
relations. No broader consequences, abstract structures or possibilities could be consid-
ered. Devlin’s [8] main conclusion about what differentiates people with and without a
mathematical ability is that mathematicians are capable of thinking about mathematical
objects in the same gossip-like (and thus associative) manner as other people think about
soap operas. Bauer [2] explains that science itself does not follow the formal model of
the “scientific method” but instead also heavily depends on certain other social and in-
strumental (and thus associative) factors. It is thus important that formal models about
reasoning include both the formal and the associative aspects of reasoning.

3 A classification of concepts

This section presents a classification of concepts (see figure 1) which serves to highlight
some of the differences between formal and associative concepts. The classes provide a
model for a stepwise evolution from associative to formal concepts. The classification
has three dimensions, each with three classes. In figure 1 the first dimension refers to
the types of objects and is represented vertically. The second dimension refers to the
types of signs and is represented horizontally. The last dimension distinguishes types of
internal representations and is represented by three areas: classes 1-3 at the top, classes
4, 5, 7, 8 in the middle, and classes 6, 9, 10 on the right.

Normally three dimensions with three classes each would yield a direct product of
27 classes. But there are dependencies between the different dimensions which reduce
the number of classes to 10. This classification is structurally equivalent to Peirce’s
ten-fold classification of signs but the content of the classes is different. The structural
equivalence may be due to the fact that in both cases the three dimensions contain three
classes which are increasing in complexity i.e. what Peirce calls Firstness, Secondness
and Thirdness.
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3.1 The object dimension

The three classes of the object dimension are simple objects, relational objects and
abstract objects. This dimension refers to an external viewpoint of an observer who
observes these objects within an associative context. The classes are thus not intrinsic
features of objects but based on the judgments by an observer.

Simple objects are gestalt-like structures or patterns in an external world. Examples
are “stone”, “hot”, “yellow”, and “three”. Simple objects are similar to what Lakoff [14]
calls “basic-level structures”. He states that basic-level structures arise “as a result of
our capacities for gestalt perception, mental imagery, and motor movement” (p. 302).
Even though “hot” and “yellow” are fuzzy when used in language and vary among
different speakers and situations, they correspond to simple physiological gestalts: “hot”
corresponds to an unpleasant heat sensation and “yellow” to one of three color receptors
in the human eye. Devlin [8] explains that the numbers one, two and three are perceived
in an immediate manner by many animals and by humans and do not require a counting
ability. In figure 1, simple objects are denoted by � .

Following Lakoff & Johnson’s [15] argument about the embodiment of cognition,
it is conceivable that gestalt perception is a deterministic property of an external world
constrained only by the physical, bodily properties of perception. That means that be-
ings with similar bodies and perceptive mechanisms are capable of perceiving similar
simple objects. The notion of “objects in an external world” is to be understood in
this manner. Principles of gestalt perception have been established by psychologists
and can be simulated using artificial neural networks. The more challenging aspect of
gestalt perception is not to form gestalts but to select the ones which are interesting for
or relevant to an individual in a situation. (This is one of the main challenges for data
mining applications.)

Relational objects are objects that consist of relations among objects. Examples of
relational objects are part-whole relations, many prepositions and verbs. For example,
“over” is a relational object that consists of a relation between two simple objects. These
relations are usually identified with respect to an “external world” or “object system”
(denoted by “obj syst” in figure 1). To recognize such relations, some kind of internal
representation (or conceptualization) is required, thus relational objects are established
in a triad of object system, object and conceptualization (denoted as � ) in figure 1.

In contrast to simple and relational objects, abstract objects are always culturally
determined. They are defined as objects that are under no circumstances directly emer-
gent from an external world but have components that are culturally created and require
interpretation. Examples are the abstract notions of ”mathematics” and “democracy”.
Typically it is possible to represent simple and relational objects in an iconic or index-
ical manner. But abstract objects must be represented symbolically using the symbols
of a language. In figure 1, abstract objects are represented by ���

�
which stands for “ex-

tension of a formal concept”. Animals, which have similar body size and perceptive
abilities as humans, are most likely capable of perceiving the same simple and rela-
tional objects as humans. But they may not choose to be interested in the same objects
and most likely they cannot contemplate abstract objects.



3.2 The sign dimension

The three classes of the sign dimension are “sign = object”, iconic or indexical and
symbolic. This dimension also refers to an external viewpoint of an observer who ob-
serves associations between signs and objects within an associative context. There is
no intrinsic difference between signs and objects because signs usually have a physical
representation and are thus physical objects. But in an associative relation between an
object and a sign, it can be identified which one is the sign and which one is the object
based on the focus of attention. According to Regier et al. [21], objects are whatever
is the focus of attention and signs are whatever is associated with an object but not the
focus of attention.

The first class, “sign = object”, in this dimension refers to associative relations in
which the sign and the object are essentially identical. Examples are contexts in which
an observer views an object without any interpretation or intention and no communica-
tion is involved. Only simple objects can be viewed in such a manner.

Iconic and indexical signs are grouped together in the next class because both in-
volve a physical or causal relationship between sign and object that is grounded in an
associative context. For example, iconic similarity is based on observing shared features
between object and sign, which is a physical relationship. Pointers establish causal re-
lationships between signs and objects. Due to the physical or causal relationship, an
observer needs no further information (such as linguistic knowledge) to identify the re-
lation between object and sign but, of course, causality is observer-dependent. Signs in
this class can represent both simple and relational objects, but not abstract objects. An
example of the use of indexical signs among animals is how wolves use a complex com-
munication system of pointing with their gaze and the direction of their muzzles during
hunting activities [5]. The wolves communicate relational objects such as “come”, “sit
down” and “go there” in that manner.

Symbolic signs are signs that are part of an actual language, such as a human lan-
guage. Therefore in figure 1, symbolic signs are represented by triads of signs, concep-
tualizations and language. A characteristic of symbolic signs is that they are habitual
and cannot be understood without knowledge of the language. Complex systems of an-
imal calls, such as the different barks a dog can produce [5], also fall into this class
because they cannot be understood without knowledge of the code. Dog barking is a
complex habitual sign system - although it is mostly innate and not conventionally de-
fined such as human languages. An obvious difference between dog barking and human
language is that dogs cannot communicate abstract objects but humans can. Thus some
symbolic sign systems can represent all types of objects (simple, relational and abstract
ones), others can only represent simple ones or simple and relational ones.

3.3 The dimension of internal representations

The third dimension pertains to the internal representations or conceptualizations (de-
noted by � in figure 1) that mediate between the perception or contemplation of objects
and the production of signs. “Internal representation” in this paper refers to the ex-
istence of an internal brain-like or higher-order neural representation within the sign



producer. This dimension does thus not pertain to the viewpoint of an observer but in-
stead to the viewpoint of a sign producer. But observers often have some limited means
of determining the existence of internal representations of other sign producers based
on certain clues (see below).

In the first class, there is no internal representation. This is denoted by � � � in
figure 1. Examples of the lack of internal representations are a sunflower turning to
the sun, communication among bacteria or hormonal communication. These processes
are entirely deterministic or of the stimulus/response type without an opportunity for
choices. Learning can only occur at the system level through evolution but individuals
cannot learn during their life-time and cannot change their behavior. In this class an
external object as input to an agent is directly (although possibly with temporal delay)
followed by the output of a predetermined sign. This sign can be in different classes,
for example, it can involve a direct causal relationship such as fear/sweat or reflexes, or
can be symbolic such as in the case of hormones.

In the second class, the internal representations are opaque from the sign producer’s
viewpoint. In figure 1 this is denoted by a triad consisting of an object, a sign and an
internal representation ( � ). From an observer’s viewpoint there is evidence for the ex-
istence of internal representations provided by the fact that the sign producer appears
to have choices. The sign producer does not appear to react according to simple stimu-
lus/response mechanisms or deterministic input/output processes. Instead the sign pro-
ducer’s behavior is influenced by subtle contextual changes in a complex manner. But
there is no evidence that the sign producers at this level can reason about their internal
representations. Cognitive abilities that can be achieved in this class are stimulus gen-
eralizations (i.e., objects can be grouped into categories) but the category boundaries
are fuzzy and based on prototypes. For example, current artificial neural networks can
learn to categorize simple and relational objects but the networks cannot also output
the reasons why they categorize in a certain manner. The symbolic signs produced by
opaque internal representations are limited to one-word statements, such as produced
by 1-2 year old children and most animal calls.

The last class contains transparent internal representations which means that the
sign producer appears to have some insight into her internal representations. From an
observer’s viewpoint, the evidence for this is the fact that the sign producer can build
simple syntactic combinations of signs in the form of object/attribute (object HAS at-
tribute) or object/class (object ISA class) associations. Instead of simply associating
objects and signs, the sign producer can thus express some reasons why objects and
signs are associated, which eventually leads to the ability to produce formal definitions
in class 10. Obviously, transparent internal representations depend on the existence of
some language. In figure 1, transparent internal representations are denoted by an as-
sociation of � and

��� �
which represents the intension of a formal concept. The symbol

system at this stage is called “protolanguage” [8]. That means it contains simple sen-
tences of subject-verb structure but without nesting. Apart from humans maybe only
apes can reach this ability. For example, gorillas can form simple 4- to 6-word sen-
tences in sign language and thus explicitly express relationships between objects and
attributes [16]. The notion of “transparency” is not meant to imply that at this level all
concepts are fully transparent to sign producers or that they can be consistently defined.



Concepts at this level may only exist in the sense of prototype theory [22]. But “trans-
parency” means that humans are capable of contemplating at this level about what their
concepts are made of. Transparent internal representations require the use of symbolic
representations because symbols are required to express the intensions.

Only abstract objects (class 10) require transparent internal representations and full
language (as opposed to protolanguage). It is unlikely that other animals apart from hu-
mans are capable of contemplating abstract objects or using full language. For example,
it is unlikely that apes can be trained to fully understand what “democracy” means. The
difference between class 9 and 10 is that in 10 both the extensions the and intensions
of concepts are expressed as signs without direct reference to objects or object systems.
These concepts correspond to formal concepts in formal concept analysis [10]. Deacon
[7] (p. 83) states that “Words also represent other words. In fact, they are incorporated
into quite specific individual relationships to all other words of a language.” and “This
referential relationship between the words [...] forms a system of higher-order rela-
tionships.” At this level formal contexts emerge which form systems that are somewhat
independent of associative contexts. Formal contexts consist of formal concepts that are
defined in terms of extensions and intension, which are all represented using symbolic
signs of a language.

Devlin [8] (p. 219) explains that full language facilitates off-line thinking, i.e. think-
ing about objects that are not necessarily part of the immediate physical environment.
This supports the idea that the extension of concepts in class 10 does not contain objects
but instead signs. Signs in an extension facilitate the expression of meta-level statements
and recursion. In all other classes (1-9) it is not possible, for example, to express “the
word word”. Class 10 also facilitates nesting, such as “I believe that ...” or “John says
that ...”, and hypothetical statements and other complex structures because the signs
in an extension can provide constraints for the concepts. Class 10 thus supports sign
systems with full syntax.

Technically, recursive language development must have some starting points. That
means that some concepts of a language must be grounded and belong into the classes
5, 6, 8 or 9. But this grounding occurs at a systematic level not at an individual level.
That may be the reason why even though linguists have undertaken many attempts to
identify “primitive” concepts, it has not been possible so far to generate an ultimate
list of primitives. Another problem is that concepts can change their nature and migrate
from class 10 to other classes. For example, unicorns are originally class 10 because
they do not exist and have been invented by humans. But the external world to which
an object � belongs is not limited to the physical world. Humans can invent imaginary
objects and provide them with a virtual existence (shape, color, characteristics) that is
promoted via images and stories. Therefore unicorns can even belong to class 5, if they
are graphically represented and grounded into an appropriate associative context. That
means formal contexts can be used to generate and modify object systems.

4 The power of combining associative and formal concepts

The purpose for developing this ten-fold classification of concepts is to provide a model
for associative and formal concepts. Classes 1-3 do not contain concepts. The concepts



in classes 4-9 are associative; the concepts in class 10 are formal. A major aspect of
human cognition is not alone the existence of formal concepts, which by itself is a sig-
nificant difference between the cognitive abilities of humans and other animals, but the
seemingly exponential power of generating new concepts that arises from the combi-
nation of associative and formal structures. Clark [4] uses the notion of a “mangrove
effect” to denote a positive feedback loop in cognitive processes. In the same manner as
mangroves create land which encourages further mangroves to grow which create more
land, cognitive processes shift between representations, such as external and internal
ones or formal and associative ones, to achieve exponential growth of capabilities. For
example, mathematicians often draw diagrams on a piece of paper while they are solv-
ing formal problems.

It is reasonable to assume that mangrove effects apply to associative and formal
structures. For example, formalizing phenomena that have been associatively observed
often leads to completely new strains of thought, discovery of new patterns, and new
sets of associative concepts which then again can be formalized and so on. A combina-
tion of formal and associative structures is essential to exploit the grounding of associa-
tive concepts, the logical, recursive power of formal concepts and the feedback loops
that combine both. But it is still an open question how to build systems that implement
such a combination. It is not yet well understood how artificial neural networks could
reach a level of formal concepts, or how formal systems such as CYC could interact
with a perceptive input device and neural networks.

Using the classification developed in the last section it is possible to identify some of
the potential steps that are involved in an evolution from associative to formal concepts
and also to identify the points where feedback loops point back from formal structures
to associative ones. The main path from associative structures to formal structures starts
with gestalt perception and pattern recognition (classes 4, 7). Driving forces for these
classes are interaction with an external world as represented by an object system and
communication with others. Both influence focus and attention. Concepts at this level
often combine associations of co-occurring perceptive inputs, such as sound and visual
perception. The association of signs and simple and relational objects (classes 5 and
8) is most likely also based on repeated co-occurrence. Regier et al. [21] describe an
artificial neural network that provides a model for the emergence of words in classes 5
and 8.

The next step from classes 5 and 8 to classes 6 and 9 involves what Lakoff [14] calls
the construction of image schemata and what is represented as intensions in figure 1.
Image schemata provide schematic representations of the meanings of concepts. This is
a first point where a feedback loop can take place. Image schemata and metaphors can
be used to transfer known structures into new domains and establish new gestalts and
pattern. Lakoff states that “in domains where there is no clearly discernible preconcep-
tual structure to our experience, we import such structure via metaphor”. Experiments
with gorillas which are taught sign language [16] seem to indicate that these gorillas are
capable of forming simple metaphors spontaneously, such as using the signs for “dirty”
or “toilet” to denote unpleasant situations or people.

The step from associative concepts (classes 6 and 9) to formal concepts (class 10)
involves abstraction and quantification. Abstraction means that formal concepts are pri-



marily related to extensions which are signs themselves but not directly to objects.
On an associative level, quantifiers are not specified. Even an associative ISA relation
does not imply quantification. For example, the statements “dogs are pets” and “pets
are dogs” can both be uttered in an associative context without any consideration as to
whether these statements are true for all dogs in the context. In a formal context, how-
ever, relationships can be quantified. It can be stated that “some dogs are pets” and that
“all dogs are mammals”. Precise quantification facilitates precise logical inferences as
opposed to fuzzy associations.

As indicated before, class 10 facilitates a second feedback loop because the ob-
jects of formal concepts themselves can become virtual objects in imaginary worlds (or
object systems) and give rise to associative concepts in classes 4 - 9. Because there
are infinitely many possibilities to combine signs to represent hypothetical objects,
this process can generate even more associative concepts than the application of im-
age schemata (class 6 and 9) to new domains, which is still constrained by properties
of the old and new domains. Besides the interactions mentioned here there are most
likely numerous other interactions, such as lexical relations, which further add to the
complexity and creativity of human cognition.

5 Outlook: a possible application to lexical databases

Computational linguists usually represent the whole complexity of semantic relations
within linguistic structures. For example, Pustejovsky [20] proposes solutions that re-
solve the presumed polysemy of the word “finish” in sentences such as “Mary finished
the cigarette” and “Mary finished her beer”. Pustejovsky claims that “the exact meaning
of the verb finish varies depending on the object it selects”. The differences between the
two sentences are thus considered a linguistic phenomenon.

The distinction between associative and formal concepts as presented in this paper
suggests a different approach. The difference between finishing a cigarette and finish-
ing a beer results from the differences between the associative contexts of cigarettes
and beers. Every language user who knows what cigarettes are and what beer is and
what an image schema for “finish” is will immediately understand what is meant by
“finishing a cigarette” and “finishing a beer”. A language user will know that finishing
a cigarette involves extinguishing it whereas finishing a beer involves emptying a glass.
This is not lexical knowledge but instead knowledge that is based on the grounding of
“beer”, “cigarettes” and “finish” into an external world. A theory of the ground of asso-
ciative concepts is provided by sciences, such as physics, which explain the differences
between gas or smoke and fluids. Any attempt to formalize such knowledge in a lexi-
cal format (such as Pustejovsky’s Generative Lexicon or CYC) would have to include
all scientific and all common sense knowledge. On the other hand, if knowledge about
associative concepts was separated from linguistic structures and formal knowledge,
lexical databases (or ontologies) would be smaller and easier to manage.

Linguists have identified “regular polysemy” [1] as a phenomenon where several
words have polysemous senses that are distinguished in a semantically similar manner,
such as plant/food (eg. “to grow wheat” versus “to eat wheat”). Regular polysemy has
been extensively investigated with respect to the lexical database WordNet (cf., [3]).



Regular polysemy can be automatically detected in WordNet because of the semantic
relationships that are explicitly represented in WordNet. But regular polysemy only
applies to a small part of the vocabulary.

We conducted a small scale analysis of WordNet’s most polysemous nouns and
verbs. The most polysemous noun is “head” with 30 senses; the most polysemous verb
is “break” with 63 senses. We found that the senses fall into two categories: a) variations
of some basic image schema that underlies a word and b) specialized uses of a word
within fixed contexts or phrases. Phrases are not usually rule-based and thus must be
listed in a lexical databases. A problem with respect to phrases in WordNet is that
semantic relations are usually attached to the word instead of being attached to the
phrase. For example, “break” is considered a hyponym of “dance” because of the sense
“break dance, break”. We found that about 25 % to 50 % of all senses in WordNet are
phrases.

With respect to a), it is usually possible to reduce the remaining 50 - 75 % senses
of a word in WordNet to 2 - 8 primary senses that relate to a basic image schema. The
relations among the senses related to each image schema are fairly deterministic with
respect to underlying associative concepts but not as easy to exploit as regular polysemy,
which can be detected via explicit semantic relations in WordNet. Some examples of
image schemata are nouns that have a container image schema. These usually have at
least three senses: one for the container, one for the content and one for both. Nouns
that are derived from verbs usually have senses related to the case frames of the verb:
the actor, the object, the outcome, etc. Many of the more polysemous nouns have one
sense which is used as a unit of measurement such as “300 head of sheep”, “3 points on
a scale”, “3 feet tall”, and so on. A better understanding of associative concepts would
thus facilitate an improvement in the implementation of lexical databases.

6 Conclusion

There has been a recent increase in interest in associative and formal concepts, which
have been identified as a dichotomy in several disciplines. This paper provides a model
for distinguishing formal properties of associative and formal concepts. An understand-
ing of the ways in which formal and associative concepts combine in human cognition
would have major impact on the development of artificial intelligent devices. This pa-
per provides hints as to where feedback loops between associative and formal concepts
could be initiated and a sketch of where such structures would be useful in the design
of lexical databases.
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