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Abstract. Median networks have been proposed as an improvement over trees
in phylogenetic analysis. This paper argues that concept lattices represent es-
sentially the same information as median networks but with the advantage that
there is a larger FCA research community and a variety of available software
tools. Therefore evolutionary analysis is an interesting new application domain
for FCA.

1 Introduction

The field of phylogenetics tries to establish evolutionary relations among groups of
organisms - usually in form of evolutionary trees. For example, by sampling DNA from
organisms and looking at differences evolutional changes can be reconstructed. For
obvious reasons most of the DNA is extracted from currently living organisms, thus any
reconstruction of phylogenetic trees is somewhat hypothetical. There are established
means for inferring such trees (for example, involving “genetic distances”, statistical
maximum parsimony and maximum likelihood) but in cases where parallel mutations
or reversals occur, it is difficult to decide on the exact sequences of the mutations. For
example, the left-hand side in Figure 1 shows two possible trees for the changes between
1, 2, 3 and 4. As Sykes (2001, p. 178) explains, in such cases it is often not necessary
to ultimately decide which change occurred first, i.e., whether 4 derived from 1 via 2 or
via 3. Instead of deciding which of the trees is correct, one can use a graph as shown in
the right half of Figure 1 which summarises both possible trees. Not only simplifies this
the analytic process, it can also lead to more readable diagrams. Bandelt et al. (1995)
have developed the construction of such graphs into a method using median networks
as explained in the next section.

Since the graph on the right-hand side of Figure 1 is a lattice and since trees can
be embedded into lattices, the question arises as to whether Formal Concept Analysis1

(FCA) can be used instead of or in addition to median networks. One advantage of
using FCA is that FCA has a larger research community than median networks/graphs2.

? Published in Pfeiffer et al (eds.), Proc of the 20th ICCS, Springer, LNAI 7735, 2013.
1 Because FCA has been a topic of this conference for many years, this paper does not pro-

vide an introduction to FCA. Information about FCA can be found, for example, on-line
(http://www.upriss.org.uk/fca/) and in the main FCA textbook by Ganter & Wille (1999).

2 As confirmed by retrieving about 10000 hits for a search for “formal concept analysis” on
Google Scholar, as opposed to 1200 for “median network” and 900 for “median graph”.
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Fig. 1. Two possible trees (on the left) are summarised in one graph (on the right)

Furthermore, there exist more well-tested software tools for FCA3 compared to median
networks and, for example, Bandelt et al. (2000) still discuss “manual construction” of
median networks alongside some algorithms.

From the viewpoint of FCA, it is interesting to establish a further application of FCA
in the field of genetics or bioinformatics (for median networks this was first suggested
by Priss (2012)) and a further connection with a similar or related graphical represen-
tation method. This extends previous research showing similarities between FCA and
other fields, for example, Priss and Old (2008) show that concept lattices are similar to
lattice-based methods developed in information retrieval and computational linguistics.
The following section provides further details about median networks. Section 3 dis-
cusses how the phylogenetic data can be modelled with FCA and what is different or
similar to how the data is modelled with median networks. The paper finishes with a
concluding section.

2 Median networks and phylogenetics

This section provides a brief introduction to the application area of this paper4. Median
graphs are undirected graphs where any three vertices have a unique median. More
precisely, an interval between two vertices x, y in a graph is defined as I(x, y) = {v |
d(x, y) = d(x, v)+d(v, y)}where d() is the usual distance function in a graph. In other
words, an interval consists of the vertices on the shortest paths between two vertices.
A graph is called a median graph if the following property holds: ∀x,y,z : |I(x, y) ∩
I(x, z) ∩ I(y, z)| = 1. That means that there is a unique vertex (called median) that
belongs to shortest paths between any two of three vertices.

Below is a brief summary of the close relationship between median graphs, distribu-
tive lattices and median semilattices (mostly following Bandelt (1984)). In this paper
we are using the dual of the usual definition of a median semilattice (which we call a
“reverse” median semilattice) because it fits better with the constructions in the next
section. A reverse median semilattice is a join-semilattice such that every principal fil-
ter {x | x ≥ a} is a distributive lattice and any three elements have a lower bound
whenever each pair of them does.

• The covering graph of any finite distributive lattice is a median graph.

3 See http://www.upriss.org.uk/fca/fcasoftware.html
4 Based on Bandelt et al. (1995 and 2000), Sykes (2001) and Wikipedia pages.



• A finite graph G is the covering graph of a finite distributive lattice ⇐⇒ G is
a median graph with two vertices 0 and 1 such that every other vertex lies on a
shortest path between them.

• In a distributive lattice, Birkhoff’s median operation can be observed: m(a, b, c) =
(a∧ b)∨ (a∧ c)∨ (b∧ c) = (a∨ b)∧ (a∨ c)∧ (b∨ c) which also fulfills the axioms
of a median algebra.

• Every median graph is a covering graph of a reverse median semilattice with largest
element a where a is any fixed vertex.

• The covering graph of a reverse median semilattice S is a median graph provided
that S is discrete, i.e., all intervals are finite.

• A discrete lattice L with 0 is distributive⇐⇒ the covering graph of L is median.
• Tree graphs are median graphs.

Although the relationship between median graphs and lattices is mathematically
well-understood, there are still open questions left with respect to how FCA can be
used to generate meaningful concept lattices from the data.

As mentioned in the introduction, in the field of phylogenetics, it is attempted to
infer evolutionary trees from observed characteristics of species. Trees are considered
best if they are most parsimonious which means that the number of presumed evolu-
tionary changes is minimal. For example, in the right-hand side of Figure 1 it would be
more parsimonious to assume that 2 evolved directly from 1 instead of evolving from
1 via 4 and 3. A goal of phylogenetic analysis is to compute all “most parsimonious
trees” for a given data set, thus out of all possible trees the ones with minimal number
of changes. Unfortunately, this is a computationally complex task. Median networks
(or Buneman graphs) are median graphs where each vertex represents a species and
each edge represents a genetic change. Bandelt et al. (1995) argue that since a median
network is guaranteed to contain all most parsimonious trees, it is a preferred represen-
tation of evolutionary change and a significant improvement over other methods which
artificially construct a tree from the data using statistical methods (see also Sykes (2001)
and Bandelt et al. (1995 and 2000)).

Figure 2 shows an example of a median network on the left-hand side. The example
is hypothetical and not based on real data. On the left side are white mice versus brown
mice on the right. The top two vertices represent large mice, the other ones small mice.
The bottom two vertices represent tailless as opposed to tailed mice. The vertex on
the left in the middle is empty (latent) because no species in the data displays these
characteristics. This vertex is generated from the data because without it, it would not
be a median graph and not contain all most parsimonious trees. Without assuming that
small tailed white mice are latent, the difference between small and large white mice
would have coincided with loss of tail whereas in brown mice first the size changed, then
the tail was lost. Not all possible combinations are latent. For example, the existence
of large tailless mice is not implied by the data. The right-hand side of Figure 2 is
explained in the next section.

The median network in Figure 2 summarises all possible evolutionary trees. If one
assumes that the root of the trees is the top left vertex, four trees are possible. For
example, large white mice could have first become small and then brown or first become
brown and then small. While the sequence between the changes in colour and size is
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Fig. 2. Median network with latent vertex (left) and concept lattice (right)

not known, the change in size definitely preceded the loss of tail. If one assumes that
the change in size for white mice occurred before the change in colour, then the change
in colour is an instance of parallel mutation because large white mice became brown
independently of small white mice becoming brown. If the change in colour occurred
first, then the change in size would be parallel mutation. If no parallel mutations or
reversals were to occur in some data, then its median network would automatically be
a tree. But considering the examples by Bandelt et al. (1995 and 2000), most data sets
tend to contain at least some parallel mutations.

If the sample size is large, an unmodified median network may be too complex to
be graphically represented. Bandelt et al. (1995) suggest a method for reducing median
networks based on weight and frequency. In order to construct a median network, one
summarises all changes that occur simultaneously with respect to the sample species
as “weight”. For example, if colour changes in mice always correspond to changes in
ear size (hypothetically), then one would not draw separate edges for colour and ear
changes. Instead one would record one change but with a higher weight. Graphically
this can be represented by drawing a longer edge.

In the same manner, if several species have the exact same characteristics, one cre-
ates only one vertex for this group of species but records a higher frequency for this
vertex. This can be graphically represented by a larger node for the vertex. Using fre-
quencies and weights one can reduce the network by eliminating some of the edges
which are less likely to have occurred. Bandelt et al. (1995) state that in all examples
they considered so far even reduced networks still contained all most parsimonious
trees, but there is no guarantee that that is always the case.

Characteristics in phylogenetic analysis are often binary, i.e., having two possible
values. In the example in Figure 2, the characteristics are naturally binary (such as large



or not large). Other characteristics can be made binary. For example, although DNA
sequences can be of four values (A, G, C or T), Bandelt et al. (1995) argue that it is
unusual for more than one change to occur at the same site in a set of closely related
species. Thus it is sufficient to record for each site whether a change occurred or not,
ignoring the value of the change.

A median network contains all most parsimonious trees independently of where the
root of the tree is. There are methods for determining the root or evolutionary ancestor
of a set of species although it might not be easy and the root might be latent. One
method is to compare a set of species with an outgroup or reference group which is
more distantly related to all the other species than they are too each other.

3 Modelling with FCA

It is straightforward to represent the example on the left-hand side in Figure 2 as a
concept lattice as presented on the right-hand side. One advantage of using FCA is
the availability of established mathematical vocabulary for describing the phylogenetic
phenomena. Important phylogenetic notions can be directly translated into FCA ter-
minology. Series of evolutionary changes that are unambiguous correspond to attribute
implications in the lattice. For example, the implication from “tailless” to “small” in the
lattice in Figure 2 corresponds to the evolutionary loss of tail occurring after the change
in size. Latent species correspond to concepts that do not contain objects in their contin-
gent. Each meet-reducible concept in the lattice corresponds to a choice point between
different possible trees.

Table 1 shows a more complex example using mitochondrial data from Ward et
al. (1991) which was also used by Bandelt et al. (1995). In FCA terms it represents a
many-valued context. The second row from the top shows the default values for each
column. A dot in the matrix means that the default value occurs. A letter indicates a
change. As can be seen in the table, only one type of change occurs in each column.
For example, in the first data column the default value is “T” which is changed to “C”
in three rows. No changes to “A” or “G” occur in the first data column. As discussed by
Bandelt et al. (1995) this is usually the case. Therefore such tables can be interpreted as
binary matrices or single-valued contexts by only considering whether the default value
or a change occur and ignoring the type of change.

In FCA terminology, the formal objects in Table 1 are 28 mitochondrial lineages.
The right-hand column indicates the frequency of the lineages. For example, lineage 1
occurred in 3 individuals. A total number of 63 individuals was involved in the study.
The formal attributes encode the positions where the DNA sequences occur in the hu-
man reference sequence. If one encodes the attributes so that each cross represents the
positions where an object differs from the reference group then the top of the lattice will
correspond to the root of the possible evolutionary trees. This is because, as discussed
in the previous section, comparison with a reference group can be used to determine the
root. Using FCA the preprocessing of summarising objects with identical row values
and attributes with identical column values is not really necessary because such objects
(or equivalently attributes) would be grouped into the contingent of a single concept
automatically in the concept lattice.



Table 1. Nuu-Chah-Nulth mitochondrial lineages (Ward et al., 1991) as a formal context

69 88 91 106 124 149 162 166 190 194 200 219 233 247 251 255 267 271 275 296 301 302 304 319 339 344
T C C G C T C T G T C C C C G C C C T G T T C T T A

1 . . . . . . . C A . T . . . . T . . . . . . . . . . 3
2 . . . . . . . . A . T . . . . T . . . . . . . . . . 2
3 . . . . . . . . . . T . . . . T . . . . . . . . . . 1
4 . . . . . . . . . . T . . . . T . . . . . . . . C . 1
5 . T . A . . T . . . T . . . . . T . . A . . . . C . 2
6 . T . A . . . . . . T . . . . . . . . A . . . . C . 2
7 C T . A . . . . . . T . . T . . . . . A . . . . C . 1
8 . T . A . . . . . . T . . . . . T . . A . . . . C . 2
9 C T . . . . . . . . T . . . . . T . . A . . . . C . 2
10 . T . . . . . . . . T . . . . . T . . A . . . . C G 1
11 . T . . . . . . . . T . . . . . T . . A . . . . C . 5
12 . T . . . . . . . . . . . . . . T . . A . . . . C . 9
13 . T . . . . . . A . . . . . . . T . . A . . . . C . 1
14 . T . . . . . . . . T . . . . T T . . A . . . . C . 1
15 . T . . . . . . . . T . . . . T T . . A C . . . C . 2
16 . . . . . . . . . . T T . . . . . . . . . . T . C . 1
17 . . . . T . . . . . T . . . . . . . . . C . . . C . 1
18 . . . . T . . . . . T . . . . . . . . . . C . . C . 2
19 . . T . . . . . . . T . . . . . . T . . . C . . C . 1
20 . . . . . C . . . . T . . . A . . . . . . C . . C . 3
21 . . . . . . . . . . T . . . . . . . . . . C . . C . 3
22 C . . . . . . . . . T . . . . . . . . . . C . . . . 3
23 . . . . . . . . . . T T . . . . . . C . . C . . . . 1
24 . . . . . . . . . . T . . . . . . . C . . C T . . . 7
25 . . . . . . . . . . T T . . . . . . C . . C T C . . 3
26 . . . . . . . . . . . T . . . . . . C . . C T C . . 1
27 . . . . . . . C . C . . . . . . . . . . . . . . . . 1
28 . . . . . . . C . C . . T . . . . . . . . . . . . . 1

Because the median network and concept lattice for Table 1 are fairly complex, we
will first discuss a network and lattice derived for a simpler context of the same type
before discussing the one in Table 1. Figure 3 shows a concept lattice for a data table
discussed by Bandelt et al. 2000 (using HVS I data by Vigilant et al.). Two attributes are
called compatible in Bandelt’s terminology if they are lattice-theoretically comparable
or their meet is the bottom node. Bandelt calls a set of attributes a clique if the attributes
are pairwise compatible and the set is maximal with respect to inclusion. In other words,
cliques represent maximal trees. In Figure 3 one clique contains all attributes except
16243 and another clique contains all attributes except 16294 and 16239. These are the
only two cliques in Figure 3. Bandelt et al. describe a fairly complicated algorithm for
deriving the median network using cliques, peripheral elements and torsos (where the
torso data matrix consists of the non-compatible attributes).

Figure 4 shows a median network for the data in Figure 3. In contrast to Bandelt et
al. (2000), the attributes, frequencies and weights are omitted in the figure. This means
that all nodes are of the same size and the length of the edges does not carry meaning.
The lattice in Figure 3 is not distributive and thus not a covering graph of a median
graph. Nevertheless if one omits the bottom node from the lattice then its covering
graph and the median network in Figure 4 differ only by one vertex: the vertex next
to the one labelled with “8” in Figure 4. Using the statements about reverse median
semilattices from the last section, an algorithm for converting a concept lattice as in
Figure 3 into a median network as in Figure 4 consists of omitting the bottom node and
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Fig. 3. Concept lattice for HVS I data of Vigilant used by Bandelt et al. (2000)

then checking every principal filter for distributivity and turning it into a distributive
lattice if it is not already one.
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Fig. 4. The median network for Figure 3

The principal filter in Figure 3 that is not distributive is shown on the left in Figure 5
alongside the median network of the torso of Figure 4. In contrast to Figure 2 where both
the lattice and the graph produce a latent vertex, in this case the lattice does not have
one. The reason is because in Figure 2 the attribute “small” is shared by small tailless
white mice and small brown tailed mice whereas in Figure 5 object “12” does not share
any attributes with the objects “1, 2, 3, 4”. The median network in Figure 5 generates
a latent species because the difference between objects “12” and “8” consists only of



one characteristic whereas the difference between “5,7,9-11” and “1-4” consists of two
characteristics. The lattice in Figure 5 does not contain all most parsimonious trees
but the median network on the right side could be generated from it. This is an issue
that would need to be discussed with evolutionary biologists. After years of working
with FCA, the author’s intuition is that the lattice on the left is a more appropriate
representation of the data because it makes fewer assumptions about information that
is missing (i.e., latent species). But, presumably, evolutionary biologists have different
intuitions about the data than mathematicians. Thus although there is a clear algorithm
for converting concept lattices into median networks, the question is whether it is really
necessary to do so or whether a concept lattice would be a sufficiently informative
representation of the data without containing all most parsimonious trees.
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Fig. 5. Concept lattice (left) of the only non-distributive principal filter in Figure 3 and median
network (right) which is the “torso” of the median network in Figure 4

Coming back to the data presented in Table 1, Figure 6 shows the reduced median
network from Bandelt et al. (1995) for the data. Again, the frequencies and weights are
not represented in the diagram. The root of the tree is the node labelled “X”. The net-
work contains 10 latent vertices. Ward et al. (1991) identified four clusters among the
lineages ({1, 2}, {5, 6, 7, 8, ..., 15}, {23, 24, 25, 26}, and {27, 28}) by deriving a phy-
logenetic tree using statistical methods. Bandelt et al. (1995) criticise the tree presented
by Ward et al. because they believe that one cluster is missing and several other clus-
ters could be modified. The large boxes in Figure 6 are meant to indicate the clusters
according to Bandelt et al. who observe that the cluster consisting of 18, 19, 20 and 21
(and possibly also 16, 17 and 22) is missing from Ward’s tree and that maybe 3 and
4 should also belong to the cluster of 1 and 2. They argue that the information about
the clusters is very clear in the median network but might not be visible in a tree. They



further state that these problems are not restricted to Ward’s paper but can be observed
in other papers as well.
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Fig. 6. Reduced median network for Table 1 (following Bandelt et al. (1995))

The median network in Figure 6 is reduced. The reduction algorithm is described by
Bandelt et al. in great detail. Effectively the reduction algorithm splits some attributes
into versions a and b so that objects in one cluster have version a and the objects in
other clusters have b. For example, attribute 166 applies to lineages in two different
clusters. If the attribute is split into 166a for lineage 1 and 166b for lineages 27 and
28, then the structure of the network is simplified. The reasoning behind this is that if
the same change occurs for lineages that are in very different clusters, it is quite likely
that the change does not represent a single event but instead happened several times
independently. The basis for these decisions are frequencies and weights. We do not
have an exact list of which attributes were split in Figure 6. Therefore the attributes that
were split in Figure 7 are not necessarily the same as in Figure 6. We chose to split
attributes 69, 166 and 190. Furthermore we completely omitted attribute 200 because
it applies to almost all objects. The resulting lattice is shown in Figure 7. Structurally,
the graphs in Figure 6 and Figure 7 are quite similar although in Figure 7 attribute 16
is closer to the cluster involving 23 to 26 and there is a connection between 4 and 14.
We do not know whether either representation is more plausible from a phylogenetic
viewpoint.
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Fig. 7. Reduced lattice for Table 1 (splitting 69, 166, 190 and omitting 200)

In order to decide which attributes to split, one needs to first determine which ob-
jects form clusters. Figure 8 shows the object ordering (implications) of Table 1. Apart
from the already mentioned connection between 4 and 14, the clusters emerging from
the object ordering are the same as the ones discovered by Ward et al. and Bandelt et
al. Thus we propose an algorithm for reducing concept lattices as follows: determine
clusters of objects by considering the object ordering. Then investigate attributes that
apply to objects belonging to different clusters. If these attributes are high up in the
lattice, consider splitting the attribute. The resulting lattice will have fewer line cross-
ings and be more “tree like”. We are not necessarily proposing that the attributes are
completely automatically selected, but that instead expert advice is considered in the
selection process.

4 Conclusion

This paper discusses the representation of phylogenetic data as concept lattices instead
of or in addition to median networks. Both concept lattices and median networks contain
essentially the same information but FCA has a larger research community. The paper
sketches an algorithm for converting a concept lattice into a median network and for
reducing a lattice based on clustering of objects. Further discussion with phylogenetics
researchers will need to establish in how far they would be willing to accept concept
lattices that do not contain all most parsimonious trees as a representation of their data.
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Fig. 8. Object ordering for Table 1

More experiments with larger data sets are needed to determine the practical feasibility
of the suggested algorithms and to compare more examples of median networks and
concept lattices with respect to the readability of the diagrams. One aim of the paper
is to alert the wider FCA community to this application area. Because median graphs
have many interesting properties and applications themselves, establishing a connection
between them and FCA could lead to further interesting research (for example, social
network analysis or other graph and networking applications).
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