
Combining and Contrasting Formal Concept Analysis
and APOS Theory ?

Uta Priss

Zentrum für erfolgreiches Lehren und Lernen
Ostfalia University of Applied Sciences
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Abstract. This paper investigates how two different theories (FCA and APOS
Theory) complement each other with respect to applications in mathematics ed-
ucation research. APOS Theory is a constructivist theory concerned with mathe-
matical learning whereas FCA is a mathematical theory itself. Together both the-
ories provide different insights into how conceptual structures can be modelled
and learned: FCA provides a model for a structural analysis of mathematical con-
cepts and APOS Theory highlights the challenges involved in learning concepts
that are complex and abstract.

1 Introduction

The question as to how a person learns mathematical concepts can be investigated from
many different perspectives including cognitive and neuroscientific, mathematics ed-
ucational, philosophical and structural considerations. For this paper we have selected
two theories which provide very different views on what concepts are and how they may
be learned, but which complement each other. The first theory, Formal Concept Analy-
sis (FCA), was developed by Rudolf Wille in the 1980s as a mathematical lattice-based
model of conceptual hierarchies with applications in data analysis and knowledge rep-
resentation (Ganter & Wille, 1999). The second theory, APOS Theory (e.g., Dubinsky
& McDonald (2002)), was developed by Ed Dubinsky in the area of mathematics ed-
ucation research based on a constructivist understanding of learning. The abbreviation
APOS stands for Action, Process, Object and Schema and is explained further below.

Some parallels can be observed between how FCA and APOS Theory were in-
vented. Both founders (Wille and Dubinsky) started out as pure mathematicians at about
the same time and then developed a deep interest in teaching and learning. Both were
influenced by pedagogical, philosophical theories (Peirce and Piaget, respectively).
Both theories have mathematical constructs at their core (lattices in FCA and func-
tions in APOS Theory) which correspond to the mathematical research interests of their
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founders (general algebra and functional analysis). Both attracted sufficient interest to
each establish a research community that is still active today.

On the surface both theories are quite different. One theory (FCA) focuses on math-
ematical modelling which can be applied to educational data, but can also be used in
many other domains. Its model of concepts is a mathematical abstraction of a philosoph-
ical understanding of what concepts are. Thus it is somewhat removed from cognitive
and educational models of learning. The other theory (APOS Theory) is mainly con-
cerned with what happens when students mentally construct concepts within an educa-
tional setting. Contrary to FCA, APOS Theory does not provide a formal, mathematical
description of its notions. Nevertheless we argue in this paper that both theories are
complementary to each other. Each provides viewpoints that are missing from the other
theory, but might be beneficial to a more in-depth analysis of mathematical learning.

Section 2 briefly describes the two theories. It is followed, in Section 3 and Sec-
tion 4, by a closer inspection of the transitions between the main stages suggested by
APOS Theory and their relationship to FCA. The paper finishes with a conclusion.

2 A short description of the two theories

2.1 Formal Concept Analysis (FCA)

FCA is a theory of knowledge representation that presents a mathematical model for
conceptual hierarchies using lattice theory (Ganter & Wille, 1999). It formalises no-
tions of classification, ordering, hierarchies and concepts. Because FCA has been a
topic of this conference for many years, this paper does not include an introduction to
FCA. This section argues that a notion of ‘formal concept’ provides a means for mod-
elling concepts occurring in formal disciplines, such as mathematics, and explaining
how these differ from concepts occurring in the mental processing of natural language.

The definition of ‘concept’ in FCA is a formal mathematical definition and does
therefore not necessarily express exactly the same as what researchers from other dis-
ciplines perceive as concepts. Nevertheless the idea of a concept consisting of an ex-
tension and an intension is consistent with a philosophical notion of ‘concept’ that has
“grown during centuries from Greek philosophy to late Scholastic and has finally found
its modern formulation in the 17th century by the Logic of Port Royal” (Mineau et al.,
1999, p. 432). Thus FCA formalises a pre-existing notion.

The duality of extension and intension occurs in many mathematical disciplines.
Functions can be represented extensionally by n-tuples of values and intensionally by
formulas. In set theory, sets can be defined either extensionally by listing their values
or intensionally via a condition. Boolean logical statements (such as a ∨ a = a) can
be evaluated by either writing truth tables or by applying transformations and axioms.
In some domains, this duality leads to interesting questions. For example the field of
abstract algebraic logic combines extensional questions about algebras with intensional
questions about the dimension and expressive power of axiom bases. Interestingly there
are some algebras which are not representable which means that they can be described
intensionally, but not extensionally. Other algebras (such as proper relation algebras)
are extensionally easy to describe, but do not have a finite axiom basis (or intensional
description).



From a cognitive viewpoint, Endres et al. (2010) show that FCA provides a model of
neural representations of stimuli within the visual cortex of the brain. Thus it is possible
that concepts in the sense of FCA are highly relevant for modelling actual brain activity.
In other disciplines concepts are often perceived as fuzzy, context-dependent, embodied
or prototypical structures. For example, a definition of a concept for ‘democracy’ does
not have a universal, precise extension and intension. Priss (2002) calls such concepts
‘associative’ and observes that the duality of formal versus associative does not just
apply to concepts but to many structures. Formal concepts tend to occur in mathemat-
ics and natural sciences. For example, while there is no universal formal definition of
‘bird’ in natural languages, the concept of ‘passerine bird’ is formally defined in biol-
ogy and has a precise extension and intension at any point in time (which can change,
but only if new scientifically relevant facts are discovered). This notion of ‘formal con-
cept’ is slightly broader than the one used in FCA because the extension and intension
of ‘passerine bird’ are precise and finite yet impossible to be exhaustively listed.

With respect to mathematics education, Priss (2018) argues that one reason for why
many people find it difficult to learn mathematical concepts is because such concepts
are strictly formal in nature, but learners think of them in an associative manner. This
distinction is somewhat akin to Tall & Vinner’s (1981) distinction between concept def-
inition (formal) and concept image (associative). For example, the mathematical defi-
nition of ‘graph’ corresponds to a formal concept. But if one asks students who have
just started to learn mathematics at university to define ‘graph’ they might state that it is
something that is represented graphically. Thus they are describing an associative con-
cept via a prototypical feature. But ‘being graphically represented’ is neither necessary
nor sufficient for a graph and thus irrelevant for the formal concept of ‘graph’.

The conclusion of this section is that if mathematical concepts are formal in nature
and have precise extensions and intensions, then FCA concept lattices can be used to
structure mathematical knowledge. The content of such concept lattices would be in-
complete because it is not possible to list all elements in the extensions and intensions,
and not everything is known (as mentioned in the example of abstract algebraic logic
above). But contrary to other FCA applications where concept lattices present an in-
terpretation of data, mathematical knowledge can be represented with FCA so that the
conceptual hierarchy in the lattices corresponds to provable mathematical statements.
For example, a concept for ‘relation’ would be a superconcept of ‘function’ in the lat-
tice which can also be proven with mathematical theory. The relationships in the lattice
then represent structures that need to be learned by a student of mathematics.

2.2 APOS Theory

Dubinsky’s APOS Theory (Dubinsky & McDonald, 2002) is based on Piaget’s ‘reflec-
tive abstraction’ and states that mathematical knowledge is learned as a progression
involving actions, processes, objects1 and schemas. Actions consist of actually per-
forming some transformation. For example, with respect to a function that produces
the square of two numbers, an action-level understanding means that one can multiply

1 In FCA the notion ‘object’ traditionally has a different meaning. In order to avoid confusion,
in this paper we use ‘element’ instead of ‘object’ for the FCA notion.



a number with itself if shown how to do this. A process-level understanding of this
function means that one can imagine or think about calculating squares without actu-
ally doing it. At this level one can calculate squares for actual numbers, but also for an
unknown x or for complex expressions (for example (a+ b)2). Furthermore one under-
stands that the function can be reversed (by obtaining a square root) and one can think
about the behaviour of the function as it approaches infinity. Reaching a process-level
understanding is thus a complex achievement. An object-level understanding of this
function encapsulates the function itself into an object. This means that it can be com-
posed with other functions and actions, processes and transformations can be applied to
it. For example, a square function could be used as an input to another function.

A schema combines actions, processes and objects that belong together. Thus a
schema of functions involves a general understanding of how they are used and how
their actions, processes and objects relate to each other. Schemas can become objects
themselves and can be combined with other schemas. But Arnon et al. (2013, p. 26) in-
dicate that even within APOS Theory the notion of a schema is not completely finalised
and more research about schemas is needed. A ‘genetic decomposition’ is a detailed
description of a schema that shows dependencies between the mental constructions and
thus can be used to determine the sequence in which the materials might be learned.
Considering the conclusion of the last section about the possibilities of representing
mathematical knowledge with FCA, the suggestion we are proposing in this paper is
that FCA concept lattices could be helpful for representing the genetic decompositions
of APOS Theory. Currently, genetic decompositions are designed by teachers based on
experience and by using data from interviews with students. The representation of ge-
netic decompositions is semi-formal and their relationships are a mixture of conceptual,
part-whole and other relationships. Thus a genetic decomposition cannot be converted
into a lattice. But we are proposing that lattices could be used as building blocks of
genetic decompositions with other relationships possibly added to the lattices.

It should be emphasised that although the stages of APOS Theory indicate a pro-
gression, an individual does not always acquire these in this sequence. Sometimes a
student might already know some process-level aspects while still being mostly in an
action-level stage. Also a student can switch between and combine stages while work-
ing on a particular task. One important purpose of determining an APOS analysis of
a particular mathematical topic is to devise a teaching and learning cycle using activi-
ties (which help students to make the required mental constructions), class discussions
(during which a teacher observes if the students were successful at forming appropri-
ate mental constructions and relates what has been learned to relevant mathematical
knowledge) and exercises (which reinforce what has been learned and prepare students
for the next iteration of the cycle). This is called the ACE learning cycle consisting of
Activities, Class discussions and Exercises. The ACE learning cycle approach has been
shown in numerous studies to be more effective than traditional lecture-centric teaching
methods (Arnon et al., 2013).

This very brief description of APOS Theory is obviously incomplete (cf. Arnon et
al. (2013) for a comprehensive discussion of APOS Theory). It is possible that APOS
Theory is mainly only relevant for the learning of mathematics and similar formal do-
mains. An example from music education below shows that the transition from action



to process (called ‘interiorisation’) can occur in other domains. But the transition from
process to object (called ‘encapsulation’) involves some form of abstraction and may
only be relevant for domains where abstraction is frequently encountered. The next two
sections further investigate interiorisation and encapsulation, respectively.

3 Interiorisation and conceptualisation

All core notions of APOS Theory are constructivist and focus on mental constructions.
Nevertheless it is argued in this paper that it might be of interest to compare them to
similar notions from other disciplines. For example, because interiorisation implies that
internal structures are created and because, as mentioned above, experts can deliberately
switch between different APOS stages, it should be remarked that it is also possible to
consciously externalise some internal thought. Scaife and Rogers (1996) coined the
notion of ‘external cognition’ in the context of understanding how graphical represen-
tations work. It refers to using external representations during cognitive processes. For
example, mathematical tasks may become easier when they are conducted with pen and
paper. External cognition implies that external representations may add a significant
cognitive value by making something easier which would be difficult otherwise.

We propose considering interiorisation to be an example of conceptualisation be-
cause understanding a mathematical concept involves understanding which other con-
cepts are equivalent or implied by the concept and which statements can be proven
about the concept (including which elements are in its extension and which attributes
in its intension). We argue that processes, objects and schemas correspond to formal
mathematical concepts. Actions are not concepts because they are scripted procedures
which do not require any understanding.

A further aspect of interiorisation is often the creation of a function. Dubinsky con-
siders processes usually as functions and being able to write something as a function is
a good indicator that a student has achieved a process-level understanding (cf. Arnon et
al. 2013, p. 199) even though “a Process is only one part of a function”. Not every con-
cept corresponds to a function, but in mathematics many concepts can be represented
by functions. With respect to the fact that concepts in FCA consist of extensions and
intensions this suggests that it might be of interest in some applications to represent
intensions of FCA concepts by functions (e.g. algorithms or procedures) instead or in
addition to lists of attributes.

An interesting question is whether APOS Theory is also relevant for other disci-
plines. We argue that while encapsulation is only relevant if the domain is sufficiently
abstract, interiorisation might be observed in other domains. For example, in music ed-
ucation, one can observe that music learners at first often do not perceive rests at all. At
an action-level understanding they might observe a rest by making a conscious effort to
be silent for the required amount of time. A process-level understanding of musical rests
involves perceiving rests as an integral part of music where errors with respect to rests
produce the same sense of incorrectness as an imprecise pitch or a false articulation.
Interiorisation then corresponds to a cognitive change of perception or conceptualisa-
tion from something that is consciously performed to something that is internally felt.



In this case the resulting process (or concept) is neither a mathematical function nor a
formal concept.

4 Encapsulation and switching to a meta-level

The process/object transition (or encapsulation) has been extracted from APOS Theory
and been used in other theories, such as by Hazzan (2003). As stated above, we believe
that encapsulation always involves some form of abstraction. In FCA terminology it
corresponds to a concept from one formal context becoming an element in another for-
mal context and thus requiring a meta-level. In mathematics this happens frequently and
is possibly unlimited. Mathematical category theory provides an example where even
the basic elements are already encapsulated. An example from another discipline is the
notion of ‘emic units’ in linguistics which arose from the observation that the distinction
between certain units (such as phoneme and phone) also applies to other linguistic units
(morpheme, grapheme, lexeme etc) and thus presents a general (meta-level) structure
of semiotic systems. But the number of levels in non-mathematical domains is limited.

We argue in this section that encapsulation has cognitive, structural and systems-
theoretical aspects. An example of cognitive aspects of encapsulation is chunking. Cog-
nitive scientists consider grouping information so that it becomes easier to process and
memorise an innate feature of human cognition. For example, Miller (1956) observes
that humans can hold only about 7 items in short-term memory. Thus if one wants
to memorise something that contains more than 7 items, it needs to be subdivided into
groups of not more than 7 items each. Experiments have, for example, shown that expert
chess players are able to memorise the configuration of an entire chess board because
they chunk it into subgroups (Gobet et al., 2001). It is not necessary for the subgroups to
form a unit that is meaningful apart from aiding as a memorisation task. Thus not every
chunk becomes a meta-level object. But the human brain seems to have a tendency to
form chunks or gestalts even if they are not really meaningful, such as seeing pictures
in the clouds.

Part-whole relationships are an example of structural aspects of encapsulation. Lin-
guistic analyses have shown that meronymic, or part-whole relationships, are core struc-
tures of language (Miller et al. 1990) and thus of human thinking. A large number of
different types of linguistic part-whole relations have been identified in the literature
(cf. Priss (1996) for some examples). In philosophy there is an entire discipline (mere-
ology) dedicated to a theory of part-whole relationships. Encapsulation creates objects
which are wholes consisting of parts, but not every part-whole relationship creates a
meta-level. For example, the concepts of ‘finger’, ‘hand’ and ‘limb’ are all at the same
level of abstraction even though a finger is part of a hand which is part of a body. But
the concept ‘body parts’ is at a meta-level and has ‘finger’, ‘hand’ and ‘limb’ in its
extension.

A meta-level object has parts, but the parts are not necessarily relevant to how the
object behaves itself. This relates to emergence which is a systems-theoretical aspect of
encapsulation. In cognitive science and related fields the notion of ‘emergence’ is used
to describe objects or features that emerge from interactions among multiple elements
in a system without having a simple relationship between the original elements and



the emerging objects (Clark, 1997). There are many examples of emergent phenom-
ena, such as flight patterns among birds, weather phenomena, crystalline structures and
physical properties that occur at macroscopic scales, but not at microscopic scales. Of-
ten the initial elements follow simple rules. For example, migrating birds arrange their
position with respect to the other flying birds using simple rules. In John Conway’s
game of life2 there are a few simple rules about cell behaviour which cause complex
patterns to emerge. In these cases, there is a causal connection between the original
system with its elements and the emerging objects, but it is not possible to describe this
connection using a simple input/output mapping (Clark, 1997).

A claim of this paper is that chunking and part-whole relationships are necessary,
but not sufficient features of encapsulation. Emergence is often a consequence of encap-
sulation. Any mathematical definition of an object with some operations or properties
gives rise to other objects and properties. The purpose of encapsulation is so that the
resulting object can be used in further processes and transformations. By becoming an
independent unit and interacting with other objects and processes, new features and
properties can be observed which were not purposefully created during the encapsu-
lation and which have nothing to do with the properties of the original processes. For
example, even though multiplication of numbers is commutative, matrix multiplication
is not. There is no intuitive transfer of properties from parts to whole.

5 Conclusion

This paper argues that FCA and APOS Theory complement each other with respect to
analysing how mathematical concepts are learned. FCA provides a model for mathe-
matical knowledge as concept lattices of formal concepts. This clarifies for example
differences between part-whole and subconcept relationships and the transition to a
meta-level when a concept from one context becomes an element in another formal
context. Concept lattices can also explain why some concepts are more difficult to be
learned than others: If a formal context is expanded by adding further new elements
and attributes, it can happen that the new lattice is quite similar to the previous one if
the new elements and attributes do not ‘disturb’ the previous connections. But, for ex-
ample, if a new attribute applies to many old elements which did not have anything in
common in the previous lattice, then the new lattice might be radically different. Other
interesting research questions for FCA are whether it might be useful in some appli-
cations to represent intensions by functions and how the relationship between a lattice
and a meta-level lattice which has as elements the concepts of the other lattice can be
characterised.

APOS Theory emphasises the difficulties related to learning mathematics because
of challenging conceptualisations (interiorisations), encapsulations which lead from one
level of abstraction to a meta-level and the complexity of schemas that encompass math-
ematical knowledge. FCA could potentially be employed3 to derive a more formal rep-
resentation of genetic decompositions which represent schemas and structure the se-

2 en.wikipedia.org/wiki/Conway’s Game of Life
3 Possibly in combination with conceptual graphs (Sowa, 2008) and concept graphs (Wille,

2002).



quence in which mathematical concepts can be learned. Thus FCA and APOS Theory
complement each other, and a combination of both might provide insights about math-
ematical learning which surpass the analytic capabilities of either theory by itself.
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