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Abstract. In the natural sciences, mathematics and technical subjects, universi-
ties often observe generally low pass rates and high drop out rates in the first
years. Many students seem to have conceptual difficulties with technical and
mathematical materials. Furthermore, physics education research appears to indi-
cate that even students who are able to pass exams may still not have a good un-
derstanding of basic physics concepts. Some researchers use the notion of “mis-
conception” to describe conceptual differences between intuitive notions and ac-
cepted scientific notions. A significant body of educational research exists dedi-
cated to overcoming such didactic challenges, but so far not much Formal Con-
cept Analysis (FCA) research has been dedicated to these topics. The aim of this
paper is to develop a better understanding of the structure of conceptual difficul-
ties in learning processes using FCA. It is not intended in this paper to develop
new educational methods or to collect new data, but instead to analyse existing
data and models from an FCA viewpoint.

1 Introduction

Education is an interesting application area for Formal Concept Analysis1 (FCA) be-
cause the analysis, representation and development of conceptual structures - in the
mind of the learner, and maybe also of the teacher - is an inherent feature of learning
and teaching. Because modern e-learning materials and environments tend to accumu-
late and provide large amounts of data, any technology, such as FCA, developed for
structuring and retrieval of information or semantic, conceptual and ontological analy-
sis is implicitly applicable to learning materials as well.

Rudolf Wille the founder of FCA also pioneered the use of FCA for teaching math-
ematics (Wille, 1995). He published a number of subsequent papers on mathematics
restructuring and education - most of them are more general, of philosophical nature
and not specifically about FCA. Otherwise, there do not appear to be significant num-
bers of FCA publications in the educational domain. Examples of FCA applications in

? In Domenach; Ignatov; Poelmans (eds.), Contrib to the 10th ICFCA 2012
1 Because this conference is dedicated to FCA, this paper does not provide an in-

troduction to FCA. Information about FCA can be found, for example, on-line
(http://www.upriss.org.uk/fca/) and in the main FCA textbook by Ganter & Wille (1999).



this area focus on ontological representations, such as the structuring, retrieval and vi-
sualisation of learning materials (Lee, 2005) or the development of an ontology-based
courseware management system (Tane et al., 2004) which facilitates browsing, query-
ing and clustering of materials and ontology evolution. Other FCA applications relate
to the use of FCA with computer algebra systems (Priss, 2010) and to the meta-analysis
of learning materials. For example Pecheanu et al. (2011) use FCA to evaluate and
compare open source learning platforms.

Apart from the general data analysis and knowledge representation applications, it
is of interest to use FCA to directly analyse the cognitive structures involved in learn-
ing processes because presumably learning consists of concept formation, ordering and
structuring. Applying FCA in this area is not fundamentally different from other appli-
cations where different concept lattices might represent the views of different experts
except that in teaching there is an expectation that some conceptual structures are cor-
rect and some are not and that the conceptual structures of the students are intended to
change.

One obvious difficulty is that it is not easy to obtain representations of such cogni-
tive structures. Psychologists have developed methods for eliciting and externally rep-
resenting mental models. A number of applications of FCA in the psychological do-
main have been described, for example, by Spangenberg and Wolff (1991). Al-Diban
and Ifenthaler (2011) discuss the comparison of two methods for eliciting and analysing
mental models of students, one of which uses FCA. These methods build on a qualitative
analysis of data, including transcribed and coded textual protocols, and data collected
from specific tests where subjects order concepts in if-then relations. A disadvantage
of these methods is that it is not clear whether they could be applied to data observed
in real teaching situations (instead of collected from tests) because real data might not
have sufficient structure and detail. Furthermore at least in the Al-Diban and Ifenthaler
study, the focus was on declarative knowledge, that is whether students know certain
facts, not so much on degrees of understanding. An advantage of these methods is that,
for example, conceptual gaps and differences among different students and between
students and teachers can be detected and analysed.

In addition to the analysis of conceptual structures in learning processes, one might
also want to model the conceptual space of a domain for teaching purposes. This has
been achieved by Falmagne et al. (2006) who describe a “knowledge state” as the set of
particular problems a student can answer in a mathematical topic area. Feasible knowl-
edge states are represented with respect to a precedence graph. This graph is a partially
ordered set and not a lattice, but it could be embedded into a lattice and thus modelled
with FCA. The idea is that knowledge is ordered: if someone masters a certain mathe-
matical problem then that person can also solve problems that are simpler but may still
have to learn to solve problems that are more difficult. Because the precedence graph is
not a linear order, different students can take different learning paths. The position of
the knowledge state of a student in the graph shows exactly which problems the student
can attempt to learn to solve next. Furthermore the student’s progress can be exactly
measured. Establishing a precedence graph for a mathematical topic area which might
consist of hundreds of states is labour-intensive but feasible in a commercial environ-
ment such as Falmagne et al.’s ALEKS software tool. There are different means for



building such a precedence graph: by questioning experts about the difficulties and pre-
requisites of problems, by analysing student data collected from an e-learning tool or
by analysing problem solving processes in the domain.

Currently, ALEKS focuses on mathematics and science topics. It is not clear how
far such approaches would be suitable for other non-science domains where it would be
difficult to establish a precise ordering of problems. Furthermore, it it may be difficult to
evaluate how accurate and useful a particular precedence graph is because user testing
of complex e-learning tools is notoriously difficult. If student learning improves while
they are using ALEKS, it would be difficult to determine whether that is because of the
precedence graph or because of any other of ALEKS’s many features.

In summary, general knowledge representation and retrieval aspects of e-learning
tools are not any different to such aspects of other textual databases and are covered
sufficiently in other domains than educational research. But the analysis of concep-
tual structures involved in learning processes and the conceptual structuring of domain
knowledge for learning purposes is specific to educational research. Currently, FCA
appears to be underrepresented in these tasks but it should be very applicable to both
of these tasks. It is of particular interest to study differences between the conceptual
structures of a learner and of an expert, such as knowledge gaps, discrepancies and mis-
conceptions. A goal for this paper is to involve FCA in the analysis, description and
detection of conceptual difficulties, including misconceptions. Section 2 of this paper
provides an overview of challenges encountered in teaching conceptually difficult top-
ics. The following three sections show examples of conceptual difficulties for selected
mathematical topics: equality in Section 3, translating text into algebraic expressions
in Section 4 and the notion of “function” in Section 5. The lattices in these examples
are developed from the viewpoint of a teacher who is exploring the difficulties in these
areas by modelling formal contexts based on the description of misconceptions in the
literature and based on student data.

2 Successful and unsuccessful teaching

Physics Education Research studies the problems students have in acquiring physics
concepts. Hake (1998) explains that students have initial common-sense beliefs about
’motion’ which are in contradiction to current physics theory and which are not im-
proved on by traditional educational methods. Hestenes et al. (1992) published a Force
Concept Inventory (FCI) designed to test the students’ conceptual understanding of
Newtonian mechanics which can be used before and after a physics course to evaluate
the educational success of the course. The test is written in a language that is accessi-
ble to people who have never taken physics courses but the test is quite different from
standard exams which students may be able to pass by memorising and applying for-
mulas. The FCI test purely examines conceptual knowledge. It shows that there is no
correlation between standard exam results and test results of individual students. Many
students do not change their incorrect beliefs about physics concepts when they are
taking physics classes. The revelation that traditional teaching methods are largely in-
effective (Hake, 1998) led physics professors to search for alternative teaching methods
and led to the establishment of Physics Education Research as a field of study. It seems



that misconceptions are particularly visible in physics education because, on the one
hand, people have naive physics theories about natural laws based on observation and
experience and, on the other hand, scientific physics theory describes concepts and laws
with mathematical precision which are experimentally verifiable but which sometimes
contradict naive observation and experience. Outside the natural sciences, concepts are
not usually definable and verifiable with such rigour and precision. But the insights of
Physics Education Research should also be relevant for the other natural sciences and
mathematics (the latter as discussed by Riegler (2010)).

A conclusion of Physics Education Research is that teaching methods involving
interactive engagement (Hake, 1998) tend to be more successful in improving the con-
ceptual understanding of students than traditional teaching methods. Interactive engage-
ment is achieved by questioning and challenging students to think instead of just mem-
orising facts. Several factors appear to be contributing to the success of interactive en-
gagement teaching, including cognitive, social constructive and psychological factors.

From a cognitive viewpoint, it has been known for many years (Auble and Franks,
1978) that effort toward comprehension improves recall, i.e., if someone makes an ef-
fort at finding a solution before the solution is presented, recall is higher than if a solu-
tion is presented right away. Furthermore, active recall is more beneficial for long-term
retention than passive exposure (Ellis, 1995). Conway et al. (1992) report that course-
work marks are a better predictor for long-term retention than exam marks, possibly
because creating a piece of coursework requires the students to be involved with the
subject matter at a deeper level than when they reiterate facts during an exam. Conway
et al.’s (1992) paper also confirms other observations of Physics Education Research
with respect to other domains: procedural knowledge (where students learn something
by doing it) is retained much better than declarative knowledge. Students who take only
one course in a subject domain tend to forget it completely after a few years. In par-
ticular although they might remember some isolated facts, their understanding of the
subject is first to disappear - presumably because they never really understood it in the
first place. Students who take several courses on a topic and achieve a certain level of
proficiency and understanding will retain a large portion of their knowledge for a long
time. Thus if interactive engagement teaching leads to a better understanding of a sub-
ject, it will help students to remember what they have learnt more permanently than just
until the end of the term.

An example of interactive engagement teaching is Mazur’s (1996) peer instruction
which is even feasible in large classes. Using peer instruction, a lecturer pauses a lecture
with challenging questions which the students discuss among each other. Apparently
students do not change their conceptual knowledge just because a teacher provides them
with facts or a good explanation or even with a demonstration. But if they discuss
questions among each other, the students who do have correct conceptual understanding
tend to be able to convince their peers. In addition to the cognitive aspects of interactive
engagement learning, there seems to be a social component involved: peer pressure
seems to be a stronger motivation for people to question and change their beliefs than
explanation or observation.

Last but not least, psychological aspects are involved in learning processes. Devlin
(2000) argues that mathematicians are psychologically different to non-mathematicians



because mathematicians think about mathematical objects in an emotional, associa-
tive manner in the same way as other people think about physical or even animate ob-
jects. For example, mathematicians might attribute emotional features to numbers and
other abstract objects. Other psychological aspects are involved when people experi-
ence clashes between observation and scientific explanations, as for example in optical
illusions which are clashes of visual perception and logical, geometrical explanations.
Some people perceive clashes as emotionally upsetting. A famous example is the Monty
Hall problem2 about the winning chances in a game show. When Marilyn Vos Savant
discussed it and similar problems in her column in the TV magazine Parade, readers
responded with angry, emotional letters: “I will never read your column again3” or “As
a professional mathematician, I’m very concerned with the general public’s lack of
mathematical skills. Please help by confessing your error and in the future being more
careful4.” - written by someone with a Ph.D who was wrong! One can speculate that
animals have evolved probabilistic intuitions in order to make survival decisions which
evoke strong emotional responses when challenged. Another example of intuitions con-
tradicting mathematical probability is the belief which many people have that the longer
they have played in the lottery without winning, the more likely it is that they are going
to win the next time they play. Again this belief tends to have an emotional component
as anybody can observe who has ever discussed it with lottery players.

In summary, teaching a topic which contradicts the existing conceptual structures
which the students have is challenging. Methods such as peer instruction can help to
overcome cognitive, social constructivist and emotional obstacles. Clearly, not all top-
ics evoke such difficulties and some can be taught with more standard teaching meth-
ods. Thus it would be useful for a teacher to know in advance which areas of the sub-
ject domain are going to produce conceptual difficulties and which not. McDermott
(2001) argues that there is only a limited number of re-occurring conceptual difficul-
ties which tend to be experienced by all students similarly. The idea for this paper is
that FCA might provide useful methods for detecting and analysing conceptual diffi-
culties. Although McDermott (2001) emphasises that just detecting misconceptions is
not sufficient for improving teaching, providing a better understanding of the concep-
tual structures of misconceptions is going to be beneficial for teachers. In the following,
three examples of conceptual difficulties in mathematics education are analysed using
FCA.

3 Conceptual difficulties of the equality sign

Prediger (2010) discusses problems pupils are having with developing an appropriate
conceptual model of equality. In primary school, pupils tend to experience the equal
sign as a request to calculate something. For example, “2 + 3 =” might be printed in a
textbook. Prediger calls this the operational use because pupils are requested to perform
an operation. Apparently, this can lead to difficulties later when the equal sign is used in
its more general algebraic meaning (or its “relational” meaning). For example, Prediger

2 http://en.wikipedia.org/wiki/Monty Hall problem
3 Parade Magazine, July 27, 1997
4 http://www.marilynvossavant.com/articles/gameshow.html



quotes the case of a pupil who says that the equation 24 × 7 = 20 × 7 + 4 × 7 is
wrong because “24×7 does not equal 20” and the case of a pupil who writes “1×10 =
10 + 110 = 120”. Prediger then discusses the difficulties which prospective teachers
might encounter in understanding the problems these pupils are having. In her analysis
she distinguishes operational, relational and specification uses (such as defining x :=
4) of the equal sign. She divides the relational use further into symmetric identities
(4 + 5 = 5 + 4), general equivalences ((a − b)(a + b) = a2 − b2), searching for
unknowns (x2 = 6 − x) and contextual uses (a2 + b2 = c2) where the variables are
meaningful in a context, such as characterising a right-angled triangle.

To demonstrate the use of FCA in this area we have modelled the problem as a
formal context. The formal objects are examples of uses of the equal sign, inequality
(>) and equivalence (⇔). Furthermore we added basic operations from programming
languages: not-equal (!=), test for equality (==) and Boolean operators (&&). Four
of the formal attributes are from Prediger’s classification: “operation”, “contextual”,
“definition” (i.e. specification) and “law” (i.e equivalence). Here, “operation” refers to
rule-based drills where the students solve a problem in a precisely taught manner and
the equality sign is always read from left to right. A “definition” for other symbols
than “=” defines a set of possible values for a variable (e.g., i > 1). Furthermore, two
attributes have been added which distinguish whether the statements are true for all
values of the variables or just for some. Prediger’s “unknowns” has been replaced with
“test” as a request to evaluate an expression with respect to variables with given values.

contextual

<=>

x  − y   = (x−y)(x+y)22
a  + b  = c2 2 2

x := 4
2+3 =

2+y = 6
x != 4

i > 1

test

x=4        y=5&&

x == 4
x>4         −x<−4

for some values

law

3 != 4
y+1 > y

x+y = y+x

for all values definition operation

y:=4          x=3:<=>

Fig. 1. Equation, assignment and comparison operators



The resulting concept lattice (Fig. 1) shows a classification which is slightly differ-
ent from Prediger’s list5. The operational use of the equal sign is not connected to any of
the other uses. Although this results directly from the definition of the formal attribute
“operation”, it represents implicit structure which the authors were not aware of be-
fore the lattice was constructed. The separation of “operation” from the other concepts
provides a graphical explanation as to why students may find it particularly difficult to
progress from an operational use to the more general algebraic use.

The extensions of the concepts under “for all values” contain tautologies. But there
is a distinction made between those which students have to specifically learn (under
“law”) in order to understand how the operators work and those which just happen
to be true. There are three different reasons why a statement might only be true for
some values of the variables: the variables are defined in the statement; it is to be tested
whether the statement is true (or for which variables it is true); and in the contextual
use, the statement is only true in some contexts and thus describes such contexts. Some
interesting cases are under both “test” and “definition”: an equation 2 + y = 6 is both
an implicit definition of y and a request to evaluate which values of y yield the equation
to be true. For the use of != and <, it depends on the context whether the statements are
meant to be evaluated for their truth value or whether they are meant to define a range
for their variables.

4 Conceptual difficulties of translating text into algebraic
expressions

A well-known conceptual difficulty that mathematics students experience pertains to the
translation of text into algebraic expressions. Clement (1982) conducts an experiment
where he asks students to write an equation using the variables S and P to represent
“there are six times as many students as professors”. His findings are that only 40-
60% of the students produce a correct answer (S = 6P ). The most common incorrect
answer is 6S = P . He provides two reasons for the incorrect answer: first, some stu-
dents simply translate the sentence into mathematical symbols in the same word order.
Second, some students use a static comparison pattern or, in other words, an incorrect
schema where S and P do not represent numbers, but instead units of students and
professors. This is in the same manner as how m and km are used in 1000m = 1km.
In this case, m and km are not variables but represent a fixed “1 to 1000” relation-
ship. It is not possible to substitute arbitrary values for m or km, but m can be sub-
stituted with 1

1000km and km can be substituted with 1000m, yielding, for example,
2000m = 2000 × 1

1000km = 2km. One difference between units and variables for
numbers is that it is not usually acceptable to insert a multiplication sign between a
number and its unit.

Table 1 summarises the differences between the two conceptual systems: in the first
one the letters represent units, in the second, algebraic one the letters represent vari-
ables for numbers. The first conceptual system has a meronymic (part-whole) quality.
A certain, fixed aggregate of the smaller units constitutes the larger unit. The extension

5 In Fig. 1, in the statements with more than one operator the relevant one is printed in bold face.



of 6s = 1p is really a fixed “6 to 1” relation which is expressed in s and p. In contrast,
the algebraic conceptual system represents normal algebraic use of variables. The ex-
tension of s = 6 ∗ p consists of the pairs of values that can be substituted for s and p.
The table also shows examples of intensionally equivalent and implied expressions. In
the meronymic conceptual system, s is indeed smaller than p because it represents the
unit “student” which somehow has less value than the unit “professor”. It is possible to
interpret the units s and p as algebraic variables but not as “numbers of”. For example,
s could represent the money paid by a student and p the money earned by a professor.

Table 1. Two conceptual systems for the use of letters in equations

the letter means: unit variable for number
conceptual system: meronymic algebraic operation
representation: 6s = p s = 6 ∗ p
extension: relation: 6 to 1 substitution: {(6, 1), (12, 2), (18, 3), ...}
intensionally equivalent: s = 1

6
p s/p = 6/1

intensionally implied: s < p s > p

It should be emphasised that both conceptual systems in Table 1 are consistent. In
everyday experience, meronymic, unit-based conceptual systems may be much more
common than algebraic ones. Thus it should be expected that students who have not
yet made much progress towards learning algebra or people who have not recently used
algebra would prefer the meronymic, unit-based representation. Ben-Ari (1998) argues
that from a constructivist educational viewpoint, students always already have existing
mental models which may contradict scientific models. Teachers need to understand
the students’ mental models and to build on them instead of discarding them as simply
being incorrect. In this case the algebraic use of variables must be taught to people who
already employ a different, meronymic conceptual system. They need to learn to use
the different systems in different circumstances.

As a further analysis, we have coded the data from two student interviews (Clement,
1982) in a content analytic manner and converted them into a formal context. The for-
mal objects are mathematical notations as used or implied by the students. The formal
attributes are verbal descriptions made by the students converted into a slightly more
formal language. A cross in the formal context means that the student used a verbal
expression with respect to a mathematical notation. Mathematical notations and verbal
expressions that were used algebraically incorrectly by a student have been highlighted
in bold face.

The following observations can be made from the resulting concept lattice in Fig.
2. Even though it was argued that the two conceptual systems in Table 1 are both con-
sistent conceptual systems, in Fig. 2 it appears that the correct statement s = 6p is
conceptually better refined than the incorrect one 6s = p which is more isolated in the
lattice. This is because the lattice combines the data from two student interviews: one
student with a correct answer of the problem who provided detailed explanations and
reasons for why his answer was correct and another student who produced an incorrect



6 * as many P1 to 1
6s = p

6 P for S S to P is 6 to 1

S for students

more S than P number of S = number of P * 6

s = 6*ps > ps/p = 6/1P for Profs
6 to 1

s = 6p

S divided by 6

S = # Students
P = # Profs

s/6 = p

six * as many S as P

Fig. 2. Data from student interviews

solution which does not appear to be very coherent according to the lattice. The student
with the correct answer understood that the variables represent “numbers of”. The other
student said that “S stands for student”. It is interesting to observe that the student with
the incorrect solution focussed more on the relationship (“6 to 1” and “1 to 1”) which
is indeed the extension of the incorrect representation according to Table 1. When he
talked about “1 to 1” he really meant to express a “fixed correspondence”. The student
with the correct answer on the other hand demonstrated detailed understanding of al-
gebraic transformations which is why his arguments contained intensionally equivalent
and implied statements.

Clement (1982) observes that different, unsuccessful strategies have been tried to
help students in finding correct solutions. It is our opinion that all of the strategies
mentioned by Clement are methods from within the algebraic conceptual system (for
example telling the student to substitute numbers for variables or to determine whether
there are more students or professors). Presumably all instructors involved in the ex-
periments were of the opinion that a student’s attempt was plain wrong, not that it was
part of an internally coherent, but different conceptual system. One can speculate what
would happen if the students were somehow taught that there are different conceptual
systems for use of letters in equations and how to determine which conceptual system
is appropriate for which problem. We suspect that in general in most basic mathemat-
ics teaching the modelling aspect (how to determine which type of solution belongs to
which type of problem) is not significantly highlighted. Thus most students will not be
aware that there are different conceptual structures involved in using mathematics and



will not have been taught to analyse their strategies from that aspect on a meta-level.
They might be aware that they are not “very good at mathematics” without knowing
any reasons for the difficulties encountered.

5 Conceptual difficulties of the notion of “function”

The third example discussed in this paper refers to the conceptual difficulties encoun-
tered by students in learning the notion of “function”. The problem is well-known and
has been discussed numerous times (e.g., Leinhardt et al. (1990) and Breidenbach et
al. (1992)). Quite often students can recall a correct formal definition of a function, but
misconceptions become obvious when they are asked to determine whether something
can be represented as a function or not. Leinhardt et al. provide the following list of
misconceptions:

• Too narrow understanding of “function”. Only functions with certain characteristics
(regularity, symmetry, linearity, one-to-one, causal relationship, etc) or which are
represented in a certain manner (formula, graph, table) are recognised as functions.

• Correspondence: students often believe that functions must be one-to-one and they
might be confused about the difference between many-to-one and one-to-many.

• Linearity: students have a tendency towards linearity. They tend to prefer straight
lines in graphs.

• Continuous versus discrete: historically, functions were not allowed to be discon-
tinuous. Students have problems understanding the notion of continuity. They dis-
cretise continuous data.

• Representations: problems translating graphs into formulas and vice versa.
• Interpretation of graphs: students have problems with confusing intervals and points,

slope and height. They might interpret graphs in a literal, iconic manner.
• Variables: students have problems with the notion of “variable”. Some do not accept

constant functions as functions.
• Notation: students have problems understanding axes and scales in a graph.

Breidenbach et al. (1992) emphasise the “process conception of function”. They
argue that an understanding of “function” proceeds from a pre-function over an action
to a process stage. In our opinion the notion of “process” is misleading in this case
because it implies a temporal progression which is not involved in functions. This is in
contrast to functions implemented in a computer where an input is converted into an
output in real time so that the output is generated temporally after the input has been
processed and the input may be purged from memory after it has been used. Although
both Clement (1982) and Breidenbach et al. observe that students often develop a better
understanding of mathematical operations if they execute them as computer programs,
many features of mathematical objects cannot be adequately represented on a computer
(for example infinity) and thus there are limits to the use of computer programs for
representing mathematical ideas.

In our opinion, it is not the “process conception of function” that is relevant but
instead simply the “concept of function”. Breidenbach et al.’s tests for whether stu-
dents understand the notion of function include: asking students to provide a defini-
tion (i.e., an intensional description); asking students to decide whether something is a



function or not (i.e., evaluating whether something is in the extension of “function”);
and asking students to perform operations with functions (composition and reversion)
which demonstrates an understanding of the implied intensional features. Thus all of
the tests are aimed at demonstrating whether or not students have an acceptable concept
of function, including extension, intension, subsumption, implication and equivalence.
Initially, students appear to have incomplete or disconnected concepts of “function”.
For example, Breidenbach et al. report that the examples of functions provided by stu-
dents are more sophisticated than their definitions whereas Leinhardt et al. (1990) state
that students can recall an accurate definition of “function” but cannot apply it. In either
case there is a mismatch between the extension and intension of “function”.

Breidenbach et al. also test whether students develop an abstract understanding of
particular functions. For example, they define a complicated function F(a)(b)(c) the
meaning of which is “the cth character in the string which is the name of the integer
given by the ath power of the integer b”. We would argue that although translating
a function from one representation (formula) to another (textual representation) is an
important aspect of using functions, this particular example is really more a test for
intelligence than for an understanding of the notion of “function”. Similarly, they use
strings as examples of functions. Depending on how much experience students have
with programming languages, they may or may not be familiar with the representation
of strings as arrays of characters. Thus, interpreting a string as a function depends on
the students’ programming knowledge, not on an understanding of function. On the
other hand, if students do have a programming background, then functions from pro-
gramming languages can be used to emphasise to students that not all functions are of
the form “f(x) =”.

From an FCA viewpoint, data collected from student interviews and exams can be
represented as concept lattices to visualise such conceptual differences. The following
attributes are examples of how to characterise an understanding of “function”.

• representation: set, equation, graph, verbal description, table, computer program, ...
• constant, linear, quadratic, ...
• causal, non-causal
• discrete, continuous
• 1-to-1, 1-to-many (i.e., the reverse is a function), many-to-1, many-to-many
• finite domain, infinite domain

In Fig. 3 some of these attributes are selected as formal attributes and applied
to examples of functions as formal objects. The lattice shows a conceptual structure
of “function”. In this case, continuous functions with infinite domains tend to have
more attributes. For computer programs, it is a matter of choice whether one considers
“min(x)” as an abstract function with an infinite domain of possible values x (where
x is a set or other container object) or as an actually implemented function with a fi-
nite domain. The use of such an expert-designed concept lattice is in comparison with
lattices obtained from student data (which we have not included in this paper).



infinite domain

f(x) = x{(1,d),(2,s)}

equation quadraticstringset

finite domain
no pattern
discrete

min(x)

1−to−1

program linear f(x)

x:= x+1

continuous

f(x) = 1

2"one" x = 2a f(x) = x

Fig. 3. Attributes of functions

6 Conclusion

This paper argues that FCA provides useful methods for analysing conceptual diffi-
culties in learning processes. Teachers can use the construction of formal contexts and
concept lattices in order to explore the implicit structures in mathematical notions. The
data for the lattices can be obtained from the literature on misconceptions, from student
interviews or from assessment data. In this manner FCA becomes a tool for exploration
and for making underlying assumptions explicit.

Traditional teaching methods are often not successful in teaching conceptually chal-
lenging topics. While teaching methods have been developed that are more promising,
teachers still need to know when to apply such methods. Thus they need to determine
what the specific conceptual challenges are with respect to a certain domain. FCA can
be employed as a tool by teachers to familiarise themselves with the materials and to
structure difficult topics. Based on the improved understanding of the topics, teachers
can then design interactive engagement teaching exercises that focus on the conceptu-
ally challenging aspects which the students need to learn.
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