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Abstract. In computer science and mathematics education, universities often ob-
serve high failure rates among students if they are taught in a traditional, lecture-
centric manner. Interactive engagement teaching methods are more successful
but in order to develop suitable teaching materials, lecturers must be aware of po-
tential conceptual difficulties of a domain in advance, for example, by analysing
the data of student-submitted work from previous sessions. In computer science
education, the data collected from computer-based assessment tools provides a
possible source for analysing conceptual difficulties students encounter. The data
can be analysed with data mining techniques and in particular with FCA as dis-
cussed in this paper.

1 Introduction

High failure rates among students in introductory computer science and mathematics
courses at universities indicate that these topics can be difficult to teach and learn. Re-
searchers in Physics Education Research (for example, Hestenes et al. (1992)) devel-
oped standardised “concept test inventories” in order to measure how much students
actually understand and discovered that, although students might be able to pass exams,
they often do not acquire sufficient understanding of underlying concepts when tradi-
tional lecturing methods are employed. A number of “interactive engagement” meth-
ods (Hake, 1998) have been developed which improve student learning as evidenced
by higher scores on the standardised concept tests. Interactive engagement teaching in-
volves activities such as problem-based learning or peer instruction which engage the
students actively with the subject matter. The idea is that students are required to men-
tally construct conceptually difficult ideas themselves instead of completed ideas being
presented in a traditional lecture. The underlying teaching philosophy is usually called
“constructivist model” of learning (e.g., Ben-Ari, 1998), but it should be emphasised
that this refers to the students’ mental constructions of what they are learning and not
to a philosophical constructivist view which denies the existence of an external world.
Keeler and Priss (2013) argue that an appropriate philosophical foundation for interac-
tive engagement teaching is Peircean pragmatism.

One challenge for interactive engagement teaching is that conceptual development
in a learner’s mind can be a slow process. Thus, if students are expected to acquire
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a solid level of understanding of what they are learning instead of just memorising
facts and formulas which they reproduce in exams, fewer materials can be covered in
this manner. Because the amount of materials covered in a course is often externally
determined, lecturers need to carefully select which materials should be taught using
interactive engagement and which materials can be taught at a faster pace, using more
traditional methods. Ideally, conceptually difficult materials and foundational concepts
should be taught using interactive engagement methods whereas more factual and al-
gorithmic topics and materials that build on or extend foundational concepts can be
taught in more traditional ways. Therefore lecturers need to know which are the foun-
dational but difficult concepts in a domain and what exactly are the difficulties encoun-
tered by typical students with these concepts. McDermott (2001) argues that the con-
ceptual difficulties students encounter are not individually determined but all students
encounter similar difficulties at similar stages of their development - although some stu-
dents are capable of overcoming such difficulties by themselves whereas other students
need help. It follows that although it can be a labour-intensive process to develop inter-
active engagement teaching materials, such resources should be highly reusable once
they have been developed. A number of frameworks (providing standards and software)
for reusing and exchanging materials already exist, for example, the open educational
resources (OER) movement1. Thus, identifying which concepts of a domain are partic-
ularly difficult to learn and then developing interactive engagement learning materials
for these topics is a useful endeavour.

In order to reduce the cost of developing interactive engagement teaching mate-
rials, it is essential to have tools that support the detection and analysis of conceptual
difficulties in a subject domain. We have previously argued that Formal Concept Analy-
sis2 (FCA) is suitable for modelling conceptual difficulties in learning processes (Priss,
Riegler and Jensen, 2012). In that paper constructions of formal contexts using existing
analyses of misconceptions in a domain and using data from student interviews were
presented. The idea of building concept lattices from assessment data was mentioned in
that paper but not further investigated. Therefore this paper examines the usefulness of
assessment data produced by a computer-based assessment tool for identifying concep-
tual difficulties of a domain and for analysing typical learning strategies employed by
students in that domain.

It might be of interest to compare FCA-based analyses with other data mining tools
but that would be a topic for an entirely different paper. Our goal is not to investigate
whether or not FCA is better than other tools but simply to study how FCA can be
used in this case. Our reasons for choosing FCA are that there are command-line tools
available (such as http://fcastone.sourceforge.net/) which can be easily integrated with
the learning environment we are using and which we have previously successfully used
for similar data analysis tasks.

The next section describes further details about data collected from computer-based
assessment software. Section 3 provides a brief overview of the tools available specif-

1 http://en.wikipedia.org/wiki/Open educational resources
2 Because this conference is dedicated to FCA, this paper does not provide an in-
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ically for analysing Java code. Section 4 examines the types of changes students make
when they resubmit their code to the on-line tool. Section 5 describes how the data can
be modelled and analysed with FCA. Section 6 provides an overview of some related
work. The paper finishes with a conclusion.

2 Computer-based assessment software

E-learning is a complex field with many different types of software. The focus of this
paper is on what Priss, Jensen & Rod call “computer-based assessment” (CBA) software
(2012a and 2012b). CBA tools are predominantly used for teaching computer program-
ming and work by analysing and executing student-submitted source code. Following
the approach by Uri and Dubinsky (1995) who advocate teaching abstract mathemati-
cal concepts using computer programming, CBA tools could also be used in teaching
mathematics in a similar manner. CBA tools are smaller in scope than course manage-
ment systems or virtual learning environments which provide a whole range of tools for
teaching and managing a course including the storage and retrieval of exercises. CBA
tools are more similar to on-line compilers or code “pastebins” which usually contain
one area where code can be submitted, one area for the display of the result of the code
and sometimes a third area for additional feedback. But in addition to such code assess-
ment facilities, CBA tools also contain a small course management component which
allows lecturers to select and group exercises and to view the students’ submissions and
results. Over the course of a semester, CBA tools accumulate a substantial amount of
data on how the students approach a particular exercise, the number of attempts and the
kinds of errors students make and also whether students work independently or copy
from each other. The data can be analysed with data mining methods.

It should be noted that there are roughly two types of uses for CBA tools which
have quite different requirements. On the one hand, CBA tools can be used as “submis-
sion systems” which have not much more functionality than submission systems used
for the reviewing of academic papers. They allow students to submit documents (code
or other) for assignments by deadlines which are marked by one or more tutors. Some
automated tests are run on submission, for example, programs are compiled and unit
tests are executed. Even submission systems for academic papers sometimes compile
documents, for example, in the case of LaTeX documents. When CBA tools are used as
submission systems, students usually use a different tool (such as an integrated develop-
ment environment (IDE)) for developing their code which they upload after it has been
carefully executed and checked within the IDE. Code that is submitted in that manner
usually compiles but might still fail some of the other tests.

On the other hand, CBA tools can also be used as development environments them-
selves. This is particularly useful for teaching first-time programmers. The CBA tool
can even be configured so that students only write code snippets which are then auto-
matically completed to a larger program by the tool. In that manner students can focus
on learning individual constructs of a programming language (such as the use of vari-
ables, control structures or string operations) without having to learn how to use an IDE
at the same time. In particular for programming languages such as Java which are quite
verbose and require a fair amount of declarations this approach is appealing.



The data collected by both types of CBA tools (as submission system versus as
development environment) is quite different. In the first case, the student submitted
code tends to not have any compilation errors and tends to be more complex. Students
usually only resubmit the code a small number of times - depending on how much
feedback the system provides and how many resubmissions are allowed. Since students
can check the code within the IDE before they submit it, the only interesting additional
tests performed by the CBA tool are those which evaluate how well the submitted code
conforms to the specification given to the students or those which check cases that the
students might have overlooked. Apart from such tests, the main function of the CBA
tool is to make it easier for lecturers to manage, view and mark the submissions.

In the second case, if a CBA tool is used as a development environment, the com-
plete history of how the code was developed is stored by the system. Using data mining
techniques, this data can be explored to determine what kinds of misconceptions stu-
dents have about programming as evidenced by the errors they make and the strategies
they use to overcome the errors. The collected data is ideally suited for determining the
conceptual difficulties involved in computer programming. Once difficulties are iden-
tified, the feedback provided by the CBA tool to the students can be optimised and
lecturers can use that information for planning their next lectures.

From a student perspective there could be a danger that data mining techniques re-
veal too much detail about how learners are thinking. In non-e-learning environments,
students can decide at what point they are ready to submit a piece of coursework and
show it to the teacher. Students who are dissatisfied with their work might refuse to sub-
mit a piece of coursework at all. Like any other adaptive learning environment, a CBA
tool used as a development environment monitors every step a student takes. Usually
the feedback is produced automatically and the amount of data collected by such a tool
means that it is not feasible for a lecturer to look at which steps each individual student
took. Using data mining tools or FCA, however, it is possible to analyse the data in more
detail and to alert lecturers to the problems of individual students. Students should be
informed about how the data is analysed and potentially have an option to opt out of
certain types of analyses.

At the moment we are still in the process of investigating what kind of information
can be extracted from the data. But in the future, it needs to be carefully determined
how the data is aggregated and presented in a manner that suits both lecturers and
students. The data for this paper was collected during the initial testing phase of a CBA
tool. The programming exercises were not part of marked assignments and the students
volunteered to participate.

3 Tools for analysing Java code

The data from a CBA tool needs to be preprocessed in order to extract formal contexts
for exploration with FCA. This section discusses which tools are suitable for prepro-
cessing data collected from Java programming exercises. Automated code analysis is a
complex problem domain which is still being actively researched and developed (Bink-
ley, 2007). Furthermore, it appears that only a subset of the methods that are currently
being researched are already implemented and available for use - at least if, as for our



investigation, only freely available tools are considered. CBA tools usually use a num-
ber of static and dynamic testing and analysis methods in order to evaluate the student
submitted code. Even though all programming languages can be evaluated with similar
means, the feedback provided by tools for different languages is quite different. Thus
tools for preprocessing depend on the programming language used in the exercises.

In the case of Java, analyses can focus on the source code or on the compiled byte
code. Using standard testing tools, it is fairly straightforward to extract information
about classes, methods and variables and to compile basic run-time metrics, such as
how much CPU-time is used by one execution. Unfortunately, many software testing
tools are intended to be used only by the programmers themselves, run in an interactive
mode and require breakpoints or special code segments to be inserted into the code
which is not feasible for CBA tools. Preprocessing tools that are more suited for use
with CBA tools are those which are build for reverse engineering or unit and blackbox
tests that evaluate whether a piece of software conforms to a set of requirements. The
disadvantage of unit and blackbox tests is that possible problems must be anticipated
in advance. Each test provides a yes/no answer for one particular problem and misses
anything that does not exactly fit the test. Profiling or reverse engineering tools are most
promising for our purposes. FCA can then be used to aggregate and visualise the results
from such tools. Unfortunately, such tools are often quite complex to install and use.
We evaluated a number of freely available tools3 none of which seem to provide general
analyses of the data that would show the difficulties students have with a particular
exercise - unless the tests performed with a tool are configured in advance to look for
particular problems.

Because the analyses made with such tools were disappointing, we wrote some basic
scripts for comparing subsequent submissions for each individual student using Unix
“diff” and regular expressions. Although we have not completely abandoned the idea of
using profiling or tracing tools in the future, for now our basic scripts for analysing and
classifying the changes between subsequent submissions seem very promising. Every
change shows how a student perceived a certain problem with the code and attempted
to solve it. Figure 1 presents the output of using Unix “diff” to compare two subsequent
submissions of a student’s code. Only the lines that were changed are shown. The two
lines starting with “>” belong to the first version, the other two lines to the second
version of the student’s code. The student realised that the unit test used by the CBA
tool requires the string “Hello World” to be returned instead of being printed to the
standard output. The student’s first attempt was basically a correctly functioning Java
program but the requirements of the exercise were not followed. If several students
make this initial mistake, the lecturer should check the description of the exercise to see
whether this requirement is indeed clearly stated.

Some types of changes show that students are having conceptual difficulties. For ex-
ample, if the code changes completely between two attempts, either the student started
over from scratch, or, more likely, the student gave up on an initial attempt and obtained
new code either from another student or the web. Another example of students strug-
gling is if subsequent code submissions contain reversals of changes made before. In

3 Standard command-line tools jcf-dump and javap, http://pmd.sf.net, http://www.doxygen.org,
http://checkstyle.sf.net, http://sf.net/projects/javacalltracer, http://sf.net/projects/findbugs.



< public String greeting()
> public void greeting()
< return "Hello World";
> System.out.print("Hello World");

Fig. 1. Unix “diff” comparison of a student’s subsequent code submissions

that case the student is using trial and error. Other types of changes can be classified
and further analysed as described in the next section.

4 Classifying the types of changes between subsequent submissions
of code

In order to identify conceptual difficulties students are having when they are learning
to program it is essential to distinguish superficial problems which students can over-
come quickly by themselves from deeper, conceptual problems. Examples of superficial
problems are typos, syntax errors and specific requirements of an exercise which are
overlooked by a student. Students may need help from an instructor or tutor if they en-
counter conceptual difficulties. By classifying the types of changes students are making
to their code, the CBA tool can filter superficial from deeper problems.

The CBA tool we are using (described in more detail by Priss, Jensen and Rod
(2012a and 2012b)) is currently deployed in a number of introductory Java courses. A
typical course contains 10 - 30 programming exercises. Because an individual student
might submit up to 10 different attempts for each exercise and a class might consist
of 20 - 100 students, it is not feasible to manually compare subsequent submissions of
individual students. Although the CBA tool automatically performs tests on the sub-
mitted code, the tool expects a lecturer or team of tutors to have at least a brief look
at the final solutions submitted by each student because the automated marking is not
always reliable. The CBA tool provides some basic statistics about the exercises such
as which student completed which exercise with how many attempts. It calculates the
difficulty of each exercise based on how many students achieve full points for the exer-
cise. But that information is not sufficient to show exactly what kinds of problems the
students encounter. It is our intention to improve the reports generated by the CBA tool
for the lecturers. For example, the reports could highlight not just which exercises are
difficult but also what kinds of problems students are having with a difficult exercise.
Furthermore the reports could identify students whose problem solving approaches do
or do not follow certain patterns and thus might need extra help. FCA can then be used
to provide a visual summary of the data that is already provided by the CBA tool. As
mentioned before, our goal is to analyse what benefit FCA can have for CBA tools and
not to compare FCA to other technologies for this purpose.

As a first step we implemented a script which compares subsequent submissions of
each student and attempts to classify the kinds of changes implemented by the student.
Table 1 contains a summary of the types of changes that are currently detected by our
script. All other changes are tagged as “unclassified” and need to be looked at by a



person. The last column indicates what patterns are searched for by the script via regular
expressions. The table and its classifications were created in an iterative manner. We
identified some changes that could be easily classified. Then we adjusted the script to
detect those changes and to print a list of everything that could not yet be classified. This
process was continued until we could not see any further easily detectable patterns of
changes. In this manner we were able to automatically classify about 60% of the types of
changes made by the students. The accuracy of the automated classification was verified
using a square root sample. It should be noted that we are not suggesting to use our script
as an additional source of points for marking. The script cannot determine why a student
made a change or whether the change was appropriate to be made. The sole purpose of
the script is to detect patterns which highlight problems with the CBA tool itself (the
first row in Table 1), problems with an exercise (for example if the instructions given in
an exercise are unclear) or problems which particular students are having, in particular
if these represent conceptual difficulties. Although in some cases it might be possible
to automatically generate additional feedback for the students, in most cases a lecturer
will need to look into the problems highlighted by the system and then take appropriate
action. Table 1 shows that some of the changes are superficial and caused by the fact
that there are differences between the CBA tool and other development environments
and by the fact that automatic evaluation is much less forgiving than manual marking.
We have added the superficial problems caused by the CBA tool to the bug tracker list
of the tool so that they will be removed in future versions of the tool.

It is debatable whether one should insist on literal adherence to requirements. For
example, if a student is asked to produce the output “Hello World”, then “hello world!”
would not usually be acceptable. On the one hand, one can write tests that allow for
some variability of the student code with respect to the requirements. On the other
hand, students can also be expected to learn to read requirements carefully since this
may be necessary in their future jobs as well. Most students will learn to avoid superfi-
cial errors and to literally follow requirements quickly. Students with certain disabilities
or dyslexia could be disadvantaged by the rigidity of the automatic assessment. Presum-
ably such students require extra support anyway which hopefully is provided by their
universities. For example, extra tutors could either help such students with the use of
the CBA tool or manually assess the students’ work.

The most interesting, currently detected types of changes in Table 1 which point
to potential misconceptions are those that affect the program flow (Boolean logic and
control structures) and those that affect constructs that are difficult in Java (such as the
specifics of variable declarations using “public”, “static” and so on). With further use
of the system we hope to extend the table and provide a more extensive classification.

5 Analysing the data with FCA

This section discusses how FCA can be applied to data collected from a CBA tool.
Using FCA, a lecturer can generate concept lattices to obtain a visual representation
of the data produced by the scripts discussed in the previous section. We have not yet
shown the lattices to actual users of the system but we believe that contrary to the usual
argument that users might find it difficult to read the lattices this may not be a problem



Table 1. Types of changes between subsequent code submissions by individual students

Type of change/error Explanation Changes in code
Superficial, required
by CBA tool

Differences between the CBA tool and other de-
velopment environments require certain adjust-
ments to the code. Problems can occur when
copying and pasting non-ASCII characters (e.g.
German umlauts). Affects students who have
not read the help file!

package statements, use
of main method, con-
trol characters, umlaut

Requirements not fol-
lowed

Because of automatic marking, requirements
must be implemented literally and exactly. For
example, printed output must have exact capi-
talisation, use of whitespace, etc.

print statements, class
and method names,
string content, method
signatures

Not all cases consid-
ered

The CBA tool usually performs a number of
unit tests which supply different values to the
code. Code is checked for exceptional input,
such as empty input, null values, minimal or
maximal values.

initial values of vari-
ables, numerical value
change; if, for, while,
etc

Boolean logic or con-
trol structure error

Students sometimes make mistakes with using
Boolean logic expressions and with start and
end conditions of loops and with nesting of
loops.

and, or, not; if, for,
while, etc

Java variable declara-
tions

Students find this difficult. void, static, public, etc.

Student is struggling Many attempts, seemingly random changes, re-
versals of changes.

number of attempts, re-
versed changes, many
lines changed

Comments and for-
matting

The CBA tool can be configured to check for
the existence of comments and adherence to for-
matting styles.

comments, whitespace

Other type of change Were lines added, deleted or changed? Was all
of the code changed? Is this a case of plagiarism
because identical to another student’s code?

added or deleted lines,
many lines changed,
plagiarism

Unclassified Our tool cannot yet classify the change.

with our user group because of their background in computer science. Figure 2 shows
an example of an analysis of a single student’s submissions for four exercises which are
the objects “1”, “2”, “3” and “4”. Explanations for the attributes can be found in Table 1.
The student in Figure 2 can be identified as a “heavily struggling student”. The student
struggled most with the first exercise. Quite possibly this was the very first attempt of
the student to write Java code. Exercises 1 and 2 show that the student has problems with
Java basics such as variable declarations. Apparently the student had no problems with
exercise 3 because only the distribution of whitespace was changed for that exercise.
Unfortunately exercise 4 has the attribute of “many lines changed”. This usually means
that the student made a first attempt and then submitted a completely different second
attempt. Sadly, code that is changed in its entirety in one step often indicates that the
code was copied from some other source (other student or the internet). Thus this is



certainly a case where the lecturer should have a conversation with the student to see
how the student can be helped.

1

 method signature

 print versus return
 main method
 added or deleted lines

4 2 3

 variable declaration

 many lines changed value change
numerical

 spacing

 class name

Fig. 2. Four exercises of a single student

Figure 3 shows a representation of all students for a single exercise. In this case
only six students used the CBA tool for this exercise. Many of the attributes are of the
“Superficial, required by CBA tool” type according to Table 1. The reason for this is be-
cause this data was obtained when we first started testing the CBA tool and we had not
yet compiled a sufficiently detailed help file which we could give to the students. One
student (“D”) seems to already have a good understanding of Java. The student just had
problems because he or she initially used an editor which encodes German umlauts in
an incompatible encoding. The student solved the problem by removing umlauts from
the code. (This is a short-coming of the CBA tool which will be fixed in the future.) Stu-
dent A’s problems are also of a superficial nature. A change in string content indicates
that the student initially did not follow the requirements of the exercise correctly but
the student resolved that quickly. Student E is also probably coping quite well. The stu-
dent used an editor which is not suitable for writing code because it produces invisible
control characters. The student changed the code completely presumably because he or
she could not find the problem but from a programming viewpoint this is a superficial
problem. Students B, C and F were having more problems with the exercise because
they made changes to if and while statements. Closer inspection of the code changes
of B and C showed that their while statement was the same. But because they only
collaborated on some lines of their code not all of it, this appears to be not a case of pla-
giarism but a normal (and encourageable) occurrence of students discussing problems
in a computer lab and then individually typing them in.



The formal contexts and lattices were generated directly from the data without fur-
ther editing of the data using the FcaStone4 software. It is feasible to create a small
interface which allows to select courses, exercises or students and then to directly pro-
duce concept lattices. Alternatively, one can conduct analyses of the data with FCA and
then compile the results into reports for the lecturers. Thus FCA would serve a role as
an expert interface to the data but would be hidden from end users.

4 http://fcastone.sourceforge.net/

 if statement
A

 string content

 while statement
 added or deleted lines

 many lines changed
 control characters

D

 umlaut

B C F

 class name

 package

 main method arguments

E

Fig. 3. Six students’ submissions for one exercise



6 Related work

Other researchers have studied how to track student interaction with e-learning envi-
ronments. But as Novak et al. (2012) observe most of the tracking research does not
focus on source code analysis. Furthermore as far was we know there has been no re-
search so far on using FCA for such purposes. The system suggested by Novak et al.
uses mostly temporal and other quantitative variables (at what times students work on
code; how long they work on an exercise; how many lines they added at each time and
so on). They are not attempting to analyse the content of the students’ work apart from
showing which part of the students’ work relates to which lecture based on the Java
class names used by the students.

Spacco et al. (2005) take snapshots of the student code submissions from a CVS
repository. Most of their analysis focuses again on quantitative attributes (the size of the
code, the number of warnings) and uses tools similar to the CBA tool we are using (bug
finders and unit tests). They are also analysing code changes using Unix “diff” which
they discuss in detail. In order to compile their data into a relational database, they
develop an algorithm to track individual lines of code across different code submissions.
Their database associates lines of code with warnings and exceptions, test results and
temporal attributes. While this is a very interesting approach, it is not yet clear how
an instructor would actually use the database. As far as we know their software is not
available for download. Therefore we were not able to evaluate it and compare it with
our software.

While there is a large amount of literature on source code analysis in general (Bink-
ley, 2007), it does not appear that there is much work on the specific question that we
are interested in: how can one identify conceptual difficulties students are having by
analysing their code submissions?

7 Conclusion

This paper discusses methods for analysing data collected from programming exercises
presented in CBA tools. The goal is to identify conceptual problems students are having
with the exercises. Initially it was attempted to combine standard software engineering
tools with FCA software for analysing the data. Unfortunately, we did not find tools at
least among freely available software that produced data which seemed to allow detec-
tion of conceptual problems. This is because such software mostly relies on configura-
tion files that contain rules for searching for problems that are anticipated in advance.
Otherwise, such tools produce general metrics or provide interactive modes for problem
analysis but, in our opinion, none of these methods are suitable for detecting previously
unknown problems. On the other hand, analysing the changes the students make when
they resubmit their code to the CBA tool does seem promising because it reflects what
stages students go through when they are developing code and how they are attempting
to solve problems. We implemented some scripts which represent basic heuristics for
classifying the kinds of changes made. Although it is not possibly to classify previously
unknown problems in this manner, it is possible to eliminate large amounts of the data
which represent superficial changes, to identify some changes which are symptomatic



of certain problems and to reduce the amount of the remaining “unclassified” problems
sufficiently so that they can be analysed manually. FCA concept lattices are a suitable
tool in this context for visualising the data.
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