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Abstract. Conceptual exploration as provided by Formal Concept Analysis is
potentially suited as a tool for developing learning materials for teaching mathe-
matics. But even just a few mathematical notions can lead to complex conceptual
structures which may be difficult to be learned and comprehended by students.
This paper discusses how the complexity of diagrammatic representations of con-
ceptual structures can potentially be reduced with Semiotic Conceptual Analysis.
The notions of “simultaneous polysemy” and “observational advantage” are de-
fined to describe the special kind of relationship between representations and their
meanings which frequently occurs with diagrams.

1 Introduction

When learning mathematics, students need to acquire concepts using some kind of in-
formal conceptual exploration where they mentally verify implications and identify
counter examples to rule out misconceptions. The Formal Concept Analysis (FCA)
method of conceptual exploration can formalise such a process by determining the rel-
evant implicit knowledge that is contained in a domain. But concept lattices tend to
contain too many concepts to be individually learned. Most likely some form of cov-
ering of the content of a concept lattice is required. Diagrams and visualisations often
provide very concise representations of knowledge, because, as the proverb states, “a
picture is worth 1000 words”. But visualisations have both advantages as well as limits.
Different students may be more or less adept in reading graphical representations. Thus
not a single, but a variety of forms of representations may be required and students need
to learn to switch between them.

A supportive theory for understanding the role of diagrams for conceptual learning
is supplied by Semiotic Conceptual Analysis (SCA) – a mathematical formalisation of
core semiotic notions that has FCA as a conceptual foundation (Priss 2017). A sign
in SCA is a triple consisting of an interpretation, a representamen and a denotation (or
meaning) where interpretations are partial functions from the set of representamens into
the set of denotations. The capacity of a representamen (such as a diagram) to denote
more than just one meaning is introduced in the notion of simultaneous polysemy in this
paper. Simultaneous polysemy is contrasted with ambiguous polysemy which describes
a representamen being mapped onto slightly different meanings in different usage con-
texts. Both forms of polysemy contribute to the efficiency of sets of representamens:
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a smaller set of representamens is capable of representing a larger set of denotations.
For example, it is more efficient and easier to learn to read and write languages that use
an alphabet as compared to Chinese. Letters of an alphabet are ambiguously polyse-
mous because each letter expresses a small variety of different but similar phonemes in
different usage contexts. Diagrams are usually simultaneously polysemous which is fur-
ther explored in the notion of observational advantage adopted from the research about
diagrams by Stapleton et al. (2017), although with a somewhat different formalisation.

The next section introduces a few non-standard FCA notions and the core SCA
notions required for this paper. An introduction to FCA is not provided because FCA
is the main topic of this conference. Section 3 discusses observational advantages of
tabular, Euler and Hasse diagrams. Section 4 provides a small example of how to obtain
an observationally efficient diagram. The paper finishes with a conclusion.

2 FCA and SCA Notions

This section repeats relevant notions from SCA, introduces some new SCA notions and
a few non-standard FCA notions. A supplemental concept is a concept whose extension
equals the union of the extensions of its proper subconcepts. In a Hasse diagram with
minimal labelling, supplemental concepts are those that are not labelled by an object.
Each supplemental concept corresponds to a clause because for such a concept c with
extension ext(c) and intension int(c) and the condition ∀(oi ∈ ext(c) : ∃(ci < c :
oi ∈ ext(ci))) it follows that

∧
(ai ∈ int(c))⇒

∨
(ai | ∃ci : ci < c, ai ∈ int(ci), ai 6∈

int(c)) is a clause. Supplemental concepts are particularly interesting if the formal
context is non-clarified and contains all objects that are known to be possible within a
domain. In that case a clause presents not just information about the concept lattice but
instead background knowledge about the domain.

In this paper the notion conceptual class is used as a placeholder for a formalisation
of conceptual structures. A conceptual class is a structure consisting of sets, relations
and functions. A logical description of a conceptual class L(C) is defined as a set of
true statements according to the rules of some logical language L. A logical description
could be provided by a description logic, formal ontology or other formal language.
Further details are left open so that SCA can be combined with a variety of conceptual
formalisations.

The following definitions briefly summarise SCA. More details can be found in
Priss (2017). A sign is a triple or element of a triadic relation:

Definition 1. For a set R (called representamens), a set D (called denotations) and
a set I of partial functions i : R 7→ D (called interpretations), a semiotic relation S is
a relation S ⊆ I × R ×D. A relation instance (i, r, d) ∈ S with i(r) = d is called a
sign. For a semiotic relation, an equivalence relation ≈R on R, an equivalence relation
≈I on I , and a tolerance relation ∼D on D are defined.

Additionally, the non-mathematical condition is assumed that signs are actually oc-
curring in some communication event at a certain time and place. Representamens are
entities that have a physical existence, for example as a sound wave, a neural brain pat-
tern, a text printed in a book or on a computer screen or a state in a computer. Perceiving
a sound wave or a pattern on a computer screen as a word is already an interpretation.



Denotations represent meanings of signs usually in the form of concepts. Because of
their physical existence, representamens tend to be at most equivalent instead of equal
to each other. For example, two spoken words will never be totally equal but can be
considered equivalent if they are sufficiently similar to each other. When referring to a
sign, the notions “sign” and “representamen” are sometimes used interchangeably be-
cause a representamen is the perceptible part of a sign. For example, one might refer to
“four” as a sign, word or representamen.

The tolerance relation in Def. 1 expresses similarity amongst meanings correspond-
ing to synonymy. For example, “car” might be a synonym of “vehicle” and “vehicle”
a synonym of “truck”, but “truck” not a synonym of “car”. In some domains (such as
mathematics), equality of denotations is more important than similarity. The tolerance
relation also serves the purpose of distinguishing polysemous signs (with similar mean-
ings) from homographs which have totally unrelated meanings. For example (i1, “lead”,
[some metal]) and (i2,“lead”, [to conduct]) are homographs whereas the latter is poly-
semous to (i3,“lead”, [to chair]). An equivalence relation on interpretations can express
a shared usage context of signs consisting of time, place and sign user. Equivalent inter-
pretations belong to a single, shared usage context and differ only with respect to some
further aspects that do not define a usage context. The first part of the next definition is
repeated from Priss (2017) but the rest is new in this paper.

Definition 2. For a semiotic relation S, two signs (i1, r1, d1) and (i2, r2, d2) are
synonyms ⇐⇒ d1 ∼D d2. They are polysemous ⇐⇒ r1 ≈R r2 and d1 ∼D d2.
Two polysemous signs are simultaneously polysemous if i1 ≈I i2. Otherwise they are
ambiguously polysemous.

Formally any sign is polysemous to itself, but in the remainder of this paper an in-
dividual sign is only called polysemous if another sign exists to which it is polysemous.
Ambiguous polysemy refers to a representamen being used in different usage contexts
with different meanings. The usage context disambiguates such polysemy. Ambiguous
polysemy poses a problem if the ambiguity cannot be resolved by the usage context. A
benefit of ambiguous polysemy is that a small number of representamens can refer to a
much larger number of denotations because each representamen can occur in many us-
age contexts. Ambiguous polysemy involving different sign users expresses differences
in understanding between the users. For example a student and a teacher might use the
same terminology but not have exactly the same understanding of it.

Definition 3. For a semiotic relation S with a sign s := (i, r, d), the sets Ssp(s) :=
{s} ∪ {(i1, r1, d1) | ∃s2∈Ssp(s) : (i1, r1, d1) polysemous to s2 and i1 ≈I i} and
Dsp(s) := {d1 | ∃(i1, r1, d1) ∈ Ssp(s)} are defined. For S1 ⊆ S the sets Ssp(S1) :=⋃

s∈S1
Ssp(s) and Dsp(S1) :=

⋃
s∈S1

Dsp(s) are defined.
The semiotic relation Ssp(s) contains all signs that have interpretations that can be

applied to r within the same usage context. It should be noted that |Ssp(s)| > |Dsp(s)|
is possible because two interpretations of signs in Ssp(s) can map r onto the same de-
notation. For ambiguous polysemy we have in the past suggested to use neighbourhood
lattices1 (Priss & Old 2004). In the terminology of SCA, such neighbourhood lattices
only consider a binary relation between representamens and denotations. A neighbour-

1 Neighbourhood lattices were originally invented by Rudolf Wille in an unpublished
manuscript.



hood context is formed by starting with a denotation and finding all representamens that
are in relation with it, then all other denotations which are in relation with one of the
representamens and so on. Alternatively, one can start with a representamen. Depending
on the sizes of the retrieved sets one can determine when to stop and whether to apply
different types of restrictions (Priss & Old 2004). Def. 3 suggests a similar approach
for simultaneous polysemy: Dsp(s) and Dsp(S1) retrieve all denotations belonging to
a representamen or set of representamens with equivalent interpretations.

In some cases, a sign s has a representamen r which has parts that are represen-
tamens of signs (e.g. s1) themselves. In that case a mapping from s to s1 is called an
observation if an additional non-mathematical condition is fulfilled that the relationship
is based on some perceptual algorithm. For a diagram and the set S1 of all signs that
can be simultaneously observed from it, Dsp(S1) models an “observational advantage”
in analogy to the notion of Stapleton et al. (2017). In domains such as mathematics,
an implication can be considered to hold between signs if it is logically valid amongst
the denotations of the signs. Observations, however, hold between signs based on rep-
resentamens. Ideally observations amongst signs should imply implications and, thus,
representamen-based relationships should correlate with or at least not disagree with
denotation-based relationships.

Definition 4. For a semiotic relation S with signs s := (i, r, d), s1 := (i1, r1, d1),
i ≈I i1 and d = d1, the sign s has an observational advantage over s1 if |Dsp(s)| >
|Dsp(s1)|. For two semiotic relations S1 and S2 whose interpretations all belong to the
same equivalence class, S1 has a higher observational efficiency over S2 if Dsp(S1) =
Dsp(S2) and |Ssp(S1)| < |Ssp(S2)|. A semiotic relation S has maximal observational
advantage over a conceptual class if Dsp(S) contains the set of true statements of the
logical description of the conceptual class.

The last sentence of the definition extends the notion of observations to a relation-
ship between signs and conceptual classes where a conceptual class is purely denota-
tional and not a semiotic relation itself. Alternatively, conceptual classes could also be
formalised as semiotic relations. Observational advantage and efficiency can be con-
sidered a measure of quality for representamens. A sign with a higher observational
advantage might be better for certain purposes because it provides more information. A
semiotic relation has a higher observational efficiency if it can express the same content
with fewer signs. With respect to semiotic relations, the measure could be further re-
fined, because otherwise just containing a single sign with an observational advantage
is sufficient to cause a semiotic relation to have a higher observational efficiency.

Flower, Fish & Howse (2008) distinguish concrete and abstract diagrams. A con-
crete diagram is actually drawn whereas an abstract diagram contains all the informa-
tion that is required for producing a concrete diagram. For example, an abstract Hasse
diagram describes nodes, edges, labels and their relationships to each other. A concrete
diagram also contains x- and y- coordinates, fonts, colours and so. Such distinctions
are, for example, relevant for the planarity of graphs: an abstract diagram is called pla-
nar if a concrete drawing without line crossings is possible. In SCA, an interpretation
maps a concrete diagram onto an abstract diagram (as a denotation) which can then be
considered a representamen and mapped onto a conceptual class. In general, it is always
a matter of judgement to choose interpretations and denotations of a semiotic relation.



For example, one can argue that a (concrete or abstract) Hasse diagram of a con-
cept lattice has maximal observational advantage over its concept lattice. This follows
directly from how Hasse diagrams are defined, but still depends on how a conceptual
class of concept lattices is defined. Formal contexts as diagrams might contain fewer
representamens than Hasse diagrams of their concept lattices and could thus have a
higher observational efficiency. But it can be argued that only a binary relation can be
observed from a formal context. Constructing a lattice from a binary relation involves
implications as well as observations. While it may be possible to read maximum rect-
angles from a formal context, most people would have great difficulty observing the
complete conceptual ordering and, for example, the top and bottom concepts from a
formal context. In any case, both formal context diagrams as well as Hasse diagrams of
concept lattices have maximal observational advantage over the binary relation between
objects and attributes.

3 Tabular, Euler and Hasse Diagrams

Euler diagrams are a form of graphical representation of subsets of a powerset that is
similar to Venn diagrams but leaves off any zones that are known to be empty. Not all
subsets of a powerset can be represented by an Euler diagram in a well-formed manner
without including some supplemental zones (similar to supplemental concepts). Sup-
plemental zones are often shaded in order to indicate that they are empty. Fig. 1 shows
an Euler diagram in the middle. It is slightly unusual because its curves are boxes in-
stead of circles or ellipses. The correspondence between the Euler diagram and the
Hasse diagram on the right should be evident from the letters. The reason for drawing
the Euler diagram with boxes is because it allows a reduction to a diagram shown on the
left which is called tabular diagram in this paper. It seems that there should be an es-
tablished notion for “tabular diagrams” but there seem to be a variety of similar notions
(mosaic plots/displays, contingency tables, Karnaugh maps) which all have slightly dif-
ferent additional meanings. In a sense, tabular diagrams are a 2-dimensional version of
the “linear diagrams” invented by Leibniz (Chapman et al. 2014).
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Fig. 1. Tabular, Euler and Hasse diagrams

Considered as single representamens, each diagram in Fig. 1 is simultaneously pol-
ysemous because it contains a large amount of information: objects, attributes, their
binary relation and implications amongst attributes. The three types of diagrams can



be considered to denote the same conceptual class and thus to have the same observa-
tional advantage. Instead of considering each diagram as one representamen, it can also
be considered as a semiotic relation consisting of parts that are representamens. For
the following theorem it is assumed that sets (or curves) with multiple labels are not
allowed and that each diagram contains more than one set.

Theorem: Tabular, Euler and Hasse diagrams denote a shared conceptual class cor-
responding to partial orders of sets with labels and elements. If they exist, tabular dia-
grams have a higher or equal observational efficiency than Euler diagrams which have
a higher observational efficiency than Hasse diagrams.

It should be noted that an Euler diagram might just be a partially ordered set, not a
lattice. A translation from Euler to Hasse diagrams is discussed by Priss (2020) and shall
be omitted here. The proof of the second half of the theorem is that tabular diagrams
contain exactly one representamen for each object, at most two representamens for
each attribute (the name of the attribute and a bracket) and nothing else. Euler diagrams
also contain one representamen for each attribute and object, and one curve for each
attribute. Because a bracket in a tabular diagram can be omitted if the attribute belongs
to just one row or column and the outer curve may be omitted, tabular diagrams contain
potentially fewer representamens than Euler diagrams. Hasse diagrams contain labels
for the objects and attributes, one node for each attribute, but also some edges, thus
more representamens than Euler diagrams.

The question arises as to which concept lattices and which Euler diagrams can be
represented as tabular diagrams. Any tabular diagram can be converted into an Euler
diagram by extending the brackets into boxes but the resulting Euler diagram may not
be well-formed. For more than 4 elements, it may not be possible to construct a tabular
diagram at all. A solution is to duplicate some of the row and column labels, if the
diagram is not possible otherwise. Being able to embed a lattice into a direct product of
two planar lattices, is not sufficient as a condition for a corresponding tabular diagram.
Petersen’s (2010) description of an “S-order” characterises lattices which correspond
to 1-dimensional linear diagrams and could lead to a characterisation. Answering such
questions may be as difficult as it is to determine which Euler diagrams are well-formed
(Flower, Fish & Howse 2008) which has only been solved by providing algorithms so
far.

Observability as defined in the previous section is a formal condition. It does not
imply that all users can actually observe the information. If a diagram gets too large
and complex, users will have difficulties observing anything. Also, some people are
more, some less skilled in reading information from graphical representations. Further-
more, we are not suggesting that tabular or Euler diagrams have a higher observational
efficiency over Hasse diagrams with respect to all possible conceptual classes nor that
they are in any other sense “superior” to lattices. In fact a comparison between Euler
and Hasse diagrams shows varied results (Priss 2020).

One of the disadvantages of Euler and tabular diagrams is that some of the structural
symmetry may be missing. The dashed lines in Fig. 1 indicate relationships between
concepts that are neighbours in the Hasse diagram (and in the ordering relation), but are
not neighbours in the tabular diagram. Thus observability has many aspects to it. Mod-



elling with different semiotic relations and conceptual classes will produce different
results. Psychological aspects relating to perception exist in addition to formal aspects.

4 Obtaining an Observationally Efficient Diagram

This section employs an example of a formal context and lattice from Ganter & Wille
(1999, Section 2.2) consisting of seven prototypical types of triangles and their proper-
ties (Fig. 2). The example is discussed using a 3-step investigation: 1. conceptual explo-
ration, 2. reduction of the concept lattice using background knowledge and 3. finding a
diagrammatic representation that has a high observational efficiency.

The corresponding lattice is shown in Fig. 2 with empty nodes representing supple-
mental concepts and filled nodes for non-supplemental concepts. More than half of the
concepts are supplemental – and adding more types of triangles as objects would not
change that. If one removes the attribute “not equilateral” (and stores it as background
knowledge), then the resulting lattice in the left half of Fig. 3 contains fewer supple-
mental concepts. Since there is only one object that has the attribute “equilateral”, this
information can still be observed from the lattice. Thus the complexity of the lattice can
be reduced if some of the information is stored as background knowledge.

obtuse

acute

equilateral

obtuse

acute, isoseceles

right

equilateral

acute

oblique isosceles not equilateral

right

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

Obj 6

Obj 7

obtuse, isosceles

right, isosceles

Fig. 2. Classification of triangles (according to Ganter & Wille (1999))

The third step consists of considering observational advantages and efficiency. By
representing formal objects as diagrams of triangles, each object visually contains the
information about which attributes it has. Thus, for example, the triangle for Obj 4 is
simultaneously polysemous because the fact that it is equilateral, acute, oblique and
isosceles can be observed from it if one knows what having such an attribute looks like.
If one uses a string “equilateral triangle” for Obj 4 then only the attribute “equilateral”
can be observed. The other attributes can be inferred but not observed. Representing
formal objects as diagrams provides observational advantages over presenting them
as strings. Of course, in most applications it will not be the case that objects can be
represented as diagrams. Furthermore, in some disciplines diagrams are more suitable
than in others.

The tabular diagram on the right of Fig. 3 provides a higher observational efficiency
as explained in the previous section. If a student wants to memorise all existing types of
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Fig. 3. Classification of triangles: Hasse and tabular diagram

triangles, then maybe this is the most suitable diagram. Apart from the bottom node of
the lattice, the other supplemental concepts are still structurally present in the tabular di-
agram which becomes clear if the curves of the Euler diagram are added. If the attribute
“not equilateral” was added then an Euler diagram would also have more empty zones,
but those would not be visible in the tabular diagram. Again, we are not suggesting that
in general hiding information is an advantage. It depends on the purpose of a diagram.

5 Conclusion

This paper discusses means of obtaining diagrammatic representations of conceptual
structures that provide observational advantages and high observational efficiency. A
background for this research is to find ways of developing teaching material that covers
a topic area efficiently but also, if possible, by connecting to visual structures. Mathe-
matical statements and proofs often present a combination of information that can be
observed and information that must be known or inferred. We believe that in particular
the notion of “seeing” information in representations is not yet fully understood, even
though there is a long tradition of and large body of research in diagrammatic reasoning
and information visualisation.
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