
Efficient Implementation of Semantic Relations
in Lexical Databases

Uta Priss
School of Library and Information Science,
Indiana University, Bloomington, IN 47405.

Abstract

In this paper we develop a formalization of semantic relations that
facilitates efficient implementations of relations in lexical databases or
knowledge representation systems using bases. The formalization of rela-
tions is based on a modeling of hierarchical relations in Formal Concept
Analysis. Further, relations are analysed according to Relational Concept
Analysis which allows a representation of semantic relations consisting of
relational components and quantificational tags. This representation uti-
lizes mathematical properties of semantic relations. The quantificational
tags imply inheritance rules among semantic relations that can be used
to check the consistency of relations and to reduce the redundancy in
implementations by storing only the basis elements of semantic relations.
The research presented in this paper is an example of an application of
Relational Concept Analysis to lexical databases and knowledge represen-
tation systems (compare Priss (1996)) which is part of a larger framework
of research on natural language analysis and formalization.

Introduction

In this paper we define a formalization of semantic relations that occur in lex-
ical databases. In semantic networks (for example in Evans & Gazdar (1989)),
semantic relations are often implemented as relations between nodes that do
not have strong mathematical properties. Some semantic relations are defined
as symmetric; some are more or less transitive (compare the discussion on the
transitivity of the meronymy (part/whole) relation in Winston et al. (1987)).
Fischer (1991) formalizes basic properties of thesauri1, inverse relations, sym-
metry, strong intransitivity, acyclicity, and uses them to examine structural
consistencies. But his research does not include more specific formal properties
of semantic relations. There should neither be too many nor too few formal
properties of semantic relations. Too many or too strict properties limit the
semantic network to applications which do not contain natural language ex-
pressions. Too few properties (for example, no transitivity) make it impossible
to use inheritance of relations or properties and require that much redundant
information has to be implemented. We claim that Relational Concept Anal-
ysis provides a tool for analysing the formal properties of semantic relations
very carefully (compare Priss (1996)). The meronymy relation, for example,

1Thesauri can be seen as highly formalized types of semantic networks.
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can be classified into different formal types, some of which are transitive, some
are intransitive. Each relational type can then be defined with an appropriate
number of formal properties to avoid redundancy and over-formalism.

The second important factor that facilitates Relational Concept Analysis
is the distinction between lexical and conceptual entities. The building blocks
of a semantic network should be concepts and not words. For example, the
word ‘cherry’ corresponds to (at least) three different concepts: ‘cherry1 - the
fruit’, ‘cherry2 - the tree’, and ‘cherry3 - the wood’. This may seem to lead to
redundancy since several concepts have to be implemented for one word, but disk
space has become so cheap that conceptual clarity should be valued higher than
storage space. Implementing one concept/word ‘cherry’ with three different sets
of rules would increase the computational complexity involved in every query
and update of ‘cherry’. Another aspect of the conceptual versus lexical modeling
is the use of non-lexicalized concepts. If it improves the structure of a lexical
database, it should be allowed to implement concepts, such as ‘wheeled vehicle’
and ‘wheel of vehicle’, which are usually non-lexicalized, i.e. they do not usually
occur as words or entries in a dictionary.

We claim that following these principles (conceptual instead of lexical mod-
eling, defining formal properties of semantic relations where possible) improves
the efficiency of lexical databases or semantic networks. A further advantage of
Relational Concept Analysis is that a formal basis2 can be defined for semantic
relations. From the basis, which usually consists of a relatively small set of rep-
resentative elements of the relation, the complete relation can be reconstructed.
Only the relational bases need to be implemented in a lexical database, the other
relations follow from inheritance rules. This significantly reduces redundancy in
the implementation of semantic relations. And it helps with the maintenance
of the lexical database: changes of the semantic relation are made at the basis
level. If at any point inconsistencies occur, the semantic relation is simply split
into smaller consistent semantic relations with appropriate formal properties.
Before we define a basis for semantic relations and demonstrate our theory with
some examples, we give a short introduction to Formal Concept Analysis and
Relational Concept Analysis.

Formal Concept Analysis

Formal Concept Analysis (Ganter & Wille, 1996) starts with the definition of
a formal context K as a triple (G, M, I) consisting of two sets G and M and
a relation I between G and M (i.e. I ⊆ G × M). The elements of G and
M are called formal objects (Gegenstände) and formal attributes (Merkmale),
respectively. The relationship is written as gIm or (g,m) ∈ I and is read as
‘the formal object g has the formal attribute m’. A formal context can be
represented by a cross table which has a row for each formal object g, a column
for each formal attribute m and a cross in the row of g and the column of m

2The term ‘basis’ is here not used in the sense of a ‘canonical basis’ as defined in the
context of Sowa’s conceptual graphs, but in the mathematical sense of a generating system.
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Figure 1: A formal context and a line diagram of its concept lattice

if gIm. The upper half of Figure 1 shows an example of a formal context. It
has ‘person’, ‘adult’, and so on as formal objects, and ‘juvenile’, ‘grown-up’,
‘female’, and ‘male’ as formal attributes. It should be noted that this use of
‘context’ must be distinguished from the linguistic use of ‘context’. In a context
(G, M, I) the set of all common formal attributes of a set A ⊆ G of formal
objects is denoted by ιA := {m ∈ M | gIm for all g ∈ A} and, analogously,
the set of all common formal objects of a set B ⊆ M of formal attributes is
εB := {g ∈ G | gIm for all m ∈ B}. For example, in the formal context
in Figure 1, ι{man} = {grown-up, male} and ε{grown-up} = {adult, woman,
man} hold.

A pair (A,B) is said to be a formal concept of the formal context (G, M, I) if
A ⊆ G, B ⊆ M,A = εB, and B = ιA. In this paper formal concepts are denoted
by c, c1, ci and so on. For a formal concept c := (A,B), A is called the extent
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(denoted by Ext(c)) and B is called the intent (denoted by Int(c)) of the formal
concept. In the example of Figure 1, ({adult, woman, man}, {grown-up}) is a
formal concept, because ι{adult, woman, man} = {grown-up} and ε{grown-
up} = {adult, woman, man}. The set of all formal concepts of (G, M, I) is
denoted by B(G, M, I). The most important structure on B(G, M, I) is given
by the formal subconcept-superconcept relation that is defined as follows: the
formal concept c1 is a formal subconcept of the formal concept c2 (denoted by
c1 ≤ c2) if Ext(c1) ⊆ Ext(c2), which is equivalent to Int(c2) ⊆ Int(c1); c2 is
then a formal superconcept of c1 (denoted by c1 ≥ c2). For example, ({adult,
woman, man}, {grown-up}) as a formal superconcept of ({woman}, {grown-up,
female}) includes all the formal objects of the subconcept, but contains only
a subset of the formal attributes of ({woman}, {grown-up, female}). It follows
from this definition that each formal concept is a formal subconcept of itself in
contrast to the natural language use of ‘subconcept’ which excludes a concept
from being a subconcept of itself. The relation ‘≤’ is a mathematical order
relation called formal conceptual ordering on B(G, M, I) with which the set of
all formal concepts forms a mathematical lattice denoted by B(G, M, I). (This
means the greatest common subconcept and the least common superconcept
exist for all sets of concepts.)

Graphically, mathematical lattices can be visualized by line diagrams which
represent a formal concept by a small circle. For each formal object g the
smallest formal concept to whose extent g belongs is denoted by γg. And for
each formal attribute m the largest formal concept to whose intent m belongs is
denoted by µm. The concepts γg and µm are called the object concept of g and
the attribute concept of m, respectively. In the line diagram it is not necessary to
write the full extent and intent for each concept, instead the name (verbal form)
of each formal object g is written slightly below the circle of γg and the name of
each formal attribute m is written slightly above the circle of µm. The lower half
of Figure 1 shows the line diagram of the concept lattice of the formal context
in Figure 1. To read the line diagram, the extent of a formal concept consists
of all formal objects which are retrieved by starting with the formal concept
and then collecting all formal objects that are written at formal subconcepts of
that formal concept. Analogously, the intent is retrieved by collecting all formal
attributes that are written at formal superconcepts of the formal concept. More
details on Formal Concept Analysis can be found in Ganter & Wille (1997).

Relational Concept Analysis

Relational Concept Analysis is the extension of Formal Concept Analysis—
which provides a conceptual hierarchy—to a more general theory that includes
other relations among objects or attributes. It is also an extension of Woods’
(1990) quantificational tags and inheritances. In what follows, only binary re-
lations r ⊆ G × G are considered. These relations are transferred to relations
among concepts, i. e., R ⊆ B(G, M, I)× B(G, M, I), according to the following
definitions. The quantifiers that are used in the definitions can be natural lan-
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guage quantifiers or mathematical expressions, such as ||all||, ||at least 1|| (or
|| ≥ 1||), ||exactly 1|| (or ||1||), or ||at least all but 3|| (or ||> (all − 3)||) (for
more details on natural language quantifiers see Westerstahl (1989)).

Definition 1:
For a context (G, M, I), concepts c1, c2 ∈ B(G, M, I), a relation r ⊆ G×G,

and quantifiers Qi, 1 ≤ i ≤ 4, we define

c1 Rr[Q1, Q2; ] c2 :⇐⇒ Q1
g1∈Ext(c1)

Q2
g2∈Ext(c2)

: g1rg2 (1)

c1 Rr[;Q3, Q4] c2 :⇐⇒ Q3
g2∈Ext(c2)

Q4
g1∈Ext(c1)

: g1rg2 (2)

c1 Rr[Q1, Q2;Q3, Q4] c2 :⇐⇒ c1 Rr[Q1, Q2; ] c2 and c1 Rr[;Q3, Q4] c2 (3)

r is called the relational component and [Q1, Q2; ], [;Q3, Q4], or [Q1, Q2;Q3, Q4]
are called the quantificational tag of a relation. If no ambiguities are possible,
relational component and quantificational tag can be omitted in the notation of
the relation.

Depending on the quantifiers, each relation r therefore leads to several dif-
ferent relations Rr among concepts. The terms ‘quantificational tag’ and ‘rela-
tional component’ are taken from Woods’ terminology. The formalization can
best be understood through an example: ‘all door-handles are parts of doors’
states a meronymy relation between door-handles and doors. More precisely it
means that all objects that belong to the extent of the concept ‘door-handle’
have an object in the extent of the concept ‘door’ such that the meronymy rela-
tion holds between them. The variables in equivalence (1) are for this example
Q1 := ||all||, Q2 := ||≥ 1||, c1 is the concept ‘door-handle’, c2 is the concept
‘door’, and r is the relation ‘is part of’. Equivalence (2) could be ‘there is at
least one door which has a handle’, because ‘all doors have to have handles’
is not true. Equivalence (3) is the conjunction of the first two. For the door-
handle example the quantifiers are Q1 := ||all||, Q2 := ||≥ 1||, Q3 := ||≥ 1||
and Q4 := ||≥1||. Abbreviations are used for the more frequently used types of
relations:

Definition 2:
‘Rr[||≥1||, ||≥1||; ||≥1||, ||≥1||]’ is abbreviated as Rr

0.
‘Rr[||all||, Q2; ||all||, Q4]’ is abbreviated as Rr

(Q4;Q2). The vertical lines ‘||’ can
be left out for Q4 and Q2 in the subscript of Rr

(Q4;Q2)

Besides its applications to the modeling of lexical databases, this formaliza-
tion can be used to describe functions Rr

(≥0;1), bijections Rr
(1;1), or Cartesian

products Rr
(all;all). It is useful to characterize a conceptual relation by con-

sidering the concepts only and not the objects. This leads to the definition of
characteristics of the relations.

Definition 3:
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Q1 Q2 Q5 Q6

||all|| ||all|| ||all|| ||all||
||≥n|| ||≥m|| ||≥1|| ||≥1||
||all|| ||≥n|| ||all|| ||≥1||
||≥n|| ||all|| ||≥1|| ||all||

Table 1: Different quantifiers for equivalence (4)

A relation R ⊆ B(G, M, I)×B(G, M, I) for which there exist quantifiers Q5,
Q6 so that for all c1, c2 ∈ B(G, M, I)

c1 R c2 ⇐⇒ Q5
c11≤c1

Q6
c21≤c2

: c11 R c21 (4)

holds is called of characteristic [Q5, Q6; ]. Relations of characteristic [;Q5, Q6]
are defined analogously.

It is not known whether all relations have such a characteristic. But if the
set of quantifiers for Q1 and Q2 in (1) is limited to {||> (all − n)||, ||≥ n||, ||≤
(all − n)||, ||< n|| | n≥ 1} then Q5, Q6 ∈ {||all||, ||≥ 1||} in equivalence (4) (see
Priss (1996)). Table 1 shows a subset of these cases (n ≥ 1, m ≥ 1). An
interpretation of Table 1 is that if a specific number occurs on the object level,
for example, all hands have five fingers, it does not occur on the conceptual
level. For a concept ‘hand’ there is one concept ‘finger’ so that each object of
‘hand’ has five parts among the objects of ‘finger’; and not: for a concept ‘hand’
exist five concepts ‘finger’ with that property. A linguistic example where this
is even reflected in the language is that ‘having two shoes’ can also be expressed
as ‘having a pair of shoes’. From equivalence (4) follows equivalence (5) if
Rr[Q1, Q2; ] is of characteristic [Q5, Q6; ].

γg1 Rr[Q1, Q2; ] γg2 ⇐⇒ Q5
g11∈Ext(γg1)

Q6
g21∈Ext(γg2)

: γg11 Rr[Q1, Q2; ] γg21

(5)
It is therefore enough to consider object concepts in order to determine the
characteristic of a relation.

Additional properties of the relation r have consequences for the relations
Rr. For example, if r is irreflexive and transitive (and thus, by implication, anti-
symmetric) and the sets of objects of the given contexts are finite, then Rr

(≥0;≥1),
Rr

(≥1;≥0), and Rr
(≥1;≥1) are also irreflexive, antisymmetric, and transitive. If r is

the equality relation (=) then R=
(≥0;≥1) is an order relation, R=

(≥1;≥0) is the dual
order, and R=

(≥1;≥1) is an equivalence relation, and the following equivalences
hold

c1R
=
(≥0;≥1)c2 ⇐⇒ c1 ≤ c2 (6)

c1R
=
(≥1;≥0)c2 ⇐⇒ c1 ≥ c2 (7)
c1R

=
0 c2 ⇐⇒ Ext(c1) ∩ Ext(c2) 6= ∅ (8)

c1R
=
(≥1;≥1)c2 ⇐⇒ c1 = c2 (9)
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Figure 2: Different meronymy relations

Therefore the conceptual ordering itself results from a relation between ob-
jects. For further details and the proofs of the statements above see Priss (1996).

Bases of Semantic Relations

Figure 2 shows a part of a lexical database. The formal objects for this lexical
database are prototypical objects, such as ‘prototypical car’. In constructing
lexical databases it is sometimes difficult to select the distinguishing attributes.
For example, what are the exact attributes of ‘car’ which are shared by all
cars among the objects, but not by other objects? A simple solution for this
problem is to construct a concept hierarchy based on the objects and then to
determine the attributes afterwards or select default attributes, such as the
defining attribute of a car is ‘to be a car’. For these reasons we omit the formal
attributes in Figures 2 and 3. The words in the ellipses of Figures 2 and 3
denote names of the concepts.

The dotted lines in Figure 2 denote a meronymy (or part/whole) relation.
We will refer to R and r both as ‘meronymy’ relation although one is a concept
relation whereas the other is a relation among objects. The object relation r has
only the two pairs (prototypical wheel of car, prototypical car) and (prototypical
wheel of bike, prototypical bike). The relation Rr

(≥1;≥1) holds between ‘wheel of
vehicle’ and ‘wheeled vehicle’ because all wheels of vehicles are part of a wheeled
vehicle and all wheeled vehicles have wheels of vehicles. It is the ‘strongest’
relation in the sense that it implies all other relations in Figure 2. The ‘weakest’
relation (Rr

0) holds, for example, between ‘wheel’ and ‘vehicle’. There is at least
one wheel (for example, the prototypical wheel of bike) and at least one vehicle
(for example, the prototypical bike) so that the wheel is part of the vehicle. But
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not all wheels are part of vehicles, nor do all vehicles have wheels.
In the rest of this paper we will define a basis for semantic relations and

demonstrate that using a basis only one pair of the meronymy relation in Fig-
ure 2 has to be implemented so that the complete relation is implied by the
basis pair. An ||all||-quantifier for Q5 (and Q6 respectively) in equivalence
(4) obviously causes inheritance of the relation to all subconcepts, whereas an
||≥1||-quantifier causes inheritance to all superconcepts. For example, if all bird
feathers are parts of birds then all sparrow feathers (as special bird feathers)
are parts of birds and all bird feathers are parts of animals (a generalization
of bird). In lattice terms, relations that use ||all||- or ||≥ 1||-quantifiers for Q5

(or Q6) in equivalence (4) always hold for the corresponding ideals and filters,
respectively. The relations between the smallest elements of the filters and the
largest elements of the ideals form a basis. This is formalized in the next def-
inition. Theorem 1 (for the proof of this theorem see Priss (1996)) shows that
bases exist and are unique for the concept relations that have characteristics as
in Table 1. Relations of characteristic [; Q5, Q6] can be treated analogously.

Definition 4:
A basis R of a relation R of characteristic [||all||, ||≥ 1||; ] is defined as a

relation R ⊆ B(G, M, I)× B(G, M, I) satisfying, for all c1, c2 ∈ B(G, M, I),

a) c1Rc2 ⇐⇒ ∃(c◦1 ,c◦2)∈R : (c1 ≤ c◦1 and c2 ≥ c◦2) (10)

and b) R has the minimal number of elements among all relations that fulfill
equivalence (10). Bases of characteristics [||all||, ||all||; ], [||≥ 1||, ||≥ 1||; ] and
[|| ≥ 1||, ||all||; ] are defined respectively using (c1 ≤ c◦1 and c2 ≤ c◦2), (c1 ≥
c◦1 and c2 ≥ c◦2), and (c1 ≥ c◦1 and c2 ≤ c◦2).

Theorem 1:
Bases as defined in Definition 4 are unique. A relation R ⊆ B(G, M, I) ×

B(G, M, I) is of characteristic [||all||, ||≥ 1||; ], [||all||, ||all||; ], [||≥ 1||, ||≥ 1||; ] or
[||≥1||, ||all||; ] if and only if it has a basis according to Definition 4.

Equivalence (10) uses the fact that ||all||-quantifiers cause inheritance to
subconcepts (therefore c1 ≤ c◦1) and || ≥ 1||-quantifiers cause inheritance to
superconcepts (therefore c2 ≥ c◦2). A basis can thus be used to define a char-
acteristic of a concept relation that is defined on the concepts and not derived
from a relation among objects or attributes.

Figure 3 shows the same example as Figure 2. The boldface dotted line is
the basis for the relation R(≥0;≥1), which is represented by the dotted lines in
the figure. In this case R(≥1;≥0) which is not shown in the figure has the same
basis as R(≥0;≥1). There is not usually a basis for a relation R(≥1;≥1) which is
usually represented as an intersection of relations R(≥0;≥1) and R(≥1;≥0). All
the concepts in the lower ellipsis are in relation R(≥0;≥1) to all concepts in the
upper ellipsis. ‘Wheel of vehicle’ is the most general part of ‘wheeled vehicle’
which is itself the most specific whole of ‘wheel of vehicle’. A basis can consist
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Figure 3: A basis for meronymy relations

of several elements, which means a concept can have several most general parts
or most specific wholes. For example, ‘wheeled vehicle’ could also have ‘engine
of wheeled vehicle’ as another most general part. Of course, then there could
be a concept ‘parts of wheeled vehicles’ generated or identified (by adding an
attribute ‘is part of wheeled vehicle’ to the context and assigning it to each object
that is in ‘part of’ relation to ‘wheeled vehicle’). This new concept would be a
hypernym of ‘engine of wheeled vehicle’ and ‘wheel of vehicle’. ‘Parts of wheeled
vehicles’ would be in R(≥0;≥1) relation to ‘wheeled vehicle’. This pair could
then be used as a basis element. On the other hand, the pair (parts of wheeled
vehicles, wheeled vehicle) cannot replace the pairs (engine of wheeled vehicle,
wheeled vehicle) and (wheel of vehicle, wheeled vehicle) as basis element for the
R(≥1;≥0) relation. It should be obvious by now that, although the mathematical
properties of bases of semantic relations are explained in this paper, there are
still open questions for actual implementations, especially since neither ‘engine
of wheeled vehicle’ nor ‘wheel of vehicle’ nor ‘parts of wheeled vehicle’ are usually
lexicalized.

There is also a limit based on the mathematical theory to the kind of concepts
that can be generated or identified by adding appropriate attributes to the
context. For example, if c1R(≥0;≥1)c2 holds then a concept c∗1 with c1R(≥1;≥1)c

∗
1

can be generated by adding an attribute m to the context with, for all g ∈ G,
gIm :⇐⇒ (g ∈ Ext(c2) and ∃g1∈Ext(c1) : g1rg). But for c1R(≥0;≥2)c2 it is only
possible to generate c1R(≥1;≥2)c

∗
1 with Ext(c∗1) := {g2 ∈ Ext(c2) | ∃g1∈Ext(c1) :

g1rg2} because c1R(≥2;≥2)c
∗
1 may not be true for any c∗1. For the implementation
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of meronymy it is helpful if these concepts exist, therefore the question arises
whether and how non-lexicalized concepts should be added to a lexical database
to ease the implementation of semantic relations — especially, since a verbal
description of these non-lexicalized concepts is easy to obtain using ‘part of...’,
‘most general part of ...’, and so on.

Conclusion

The discussion in the last paragraph shows that there are several questions left
open concerning the implementation of natural language in lexical databases.
These questions consider not so much the mathematical details as the prob-
lems of adding non-lexicalized concepts. As stated in the introduction, non-
lexicalized concepts can be helpful to reduce redundancies and, as explained
in the other sections of this paper, they can be useful for keeping the bases of
semantic relations small. On the other hand, adding too many non-lexicalized
concepts may have a negative impact on the usability of the lexical database.
These questions require further empirical research.

The more important result of this paper is the fact that a basis imple-
mentation of semantic relations facilitates consistency checks. According to the
characteristic of a semantic relation, the relation is inherited by certain sub- and
superconcepts. The implementation of this feature should be straight forward.
Each time a new pair of an existing relation is added to the lexical database,
it has to be checked whether the new pair is already implied by the existing
basis (in which case the new pair is not added), whether it needs to be added
to the basis, or whether it contradicts the basis (in which case a closer investi-
gation of the involved concepts is required). Adding a new complete semantic
relation requires the determination of its characteristic and its basis. This could
be achieved interactively: the user adds the relation, the computer checks the
consistency and prints a list of further pairs for which the relation should also
hold. The user either accepts these pairs or modifies the characteristic of the
relation. Deleting a concept from the database does not cause problems, unless
a basis of a semantic relation is implemented using the concept, in which case
the computer suggests alternative concepts that can be used for the basis. If
concepts are added, again the user will have to determine interactively with
the computer whether existing relations can (or must) be extended to the new
concepts.
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