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Abstract

In several disciplines there is a divide between advocates of formal, “classical” or
symbolic approaches to representation, which can be expressed using standard formal
logic, and advocates of biologically inspired, fuzzy or category-based approaches to rep-
resentation, which can be implemented using fuzzy logic, neural networks, evolutionary
computing and similar techniques. This paper argues that these two approaches should
not be viewed as two mutually exclusive approaches but instead as two complementary
forms of representation which both serve a purpose and can be combined. This is es-
pecially important with respect to formal ontologies, which currently only use formal,
classical representations but which should utilize both approaches.

1 Introduction

In several disciplines there is a divide between advocates of formal, “classical” or symbolic
approaches to representation and advocates of biologically inspired, fuzzy or category-based
approaches to representation1. In this paper, the first approach will be referred to as “formal”
and the second approach as “associative”. The basic units of the approaches are called
“formal concepts” and “associative concepts”, respectively. These terms are used as defined
terms in this paper and not in their common sense meanings. Table 1 contains a summary
of their distinctive features, which are explained throughout this paper. The table is based
on our own research and on Sloman (1996) and Blank (2001).

Formal concepts, which are similar to “classes” in classification research, are precisely
defined with rigid boundaries. They usually have an extensional aspect, which is a set
of objects they denote, and an intensional aspect, which is a formal definition or set of
rules that can be expressed in formal logic. Formal concepts usually require some kind of
symbolic representation but not all symbols represent formal concepts. Together formal
concepts form a hierarchy, concept lattice or classification system based on the inclusion
relation among formal concepts, which is also called ISA relation in AI and in this paper and
is called subconcept-superconcept relation or broader term/narrower term relation in other
disciplines. Systems of formal concepts are usually modeled or designed based on theories
that humans have about the problem domain and the nature of possible solutions. They thus
have a “top-down” nature. Formal systems can be evaluated in regards to logical correctness
and completeness.

1While it could be argued that all representations are “symbolic”, in AI the term is usually used with
respect to symbols that can be comprehended and manipulated by humans. Neural networks are thus not
“symbolic”. Examples of “biologically inspired” representations are neural networks and genetic algorithms.



formal associative
concepts are ... precise fuzzy
generated by abstraction, design emergence, gestalt laws ...

top-down bottom-up
extensional features set of “objects” prototypes, exemplars
intensional features formal definitions stereotypes, image schemata

formal logic rules family resemblances
relations ISA hierarchy/lattice association

logical, formal similarity, contiguity
causal co-occurrence

reasoning inference, deduction association, induction
classification clustering

representations symbolic subsymbolic
designed by humans emergent

in a context that is formal, general associative, local
systems are correct, complete probabilistic, dynamic

macro-level micro-level
discrete continuous, “chaotic”

metaphors information processing biologically inspired
(neural networks, evolution)

implementations formal logic fuzzy logic
algorithmic, modular learning-based

Table 1

In contrast to formal concepts, associative concepts are fuzzy and without precise defini-
tions or clear boundaries. Their extensional aspects can be modeled as prototypes, exemplars
or fuzzy sets. Their intensional aspects can be modeled as schemata or family resemblances.
But intensional features are often not known precisely. The only relationship among associa-
tive concepts is association (similarity, contrast, contiguity etc). Associative concepts do not
usually form a strict ISA hierarchy. For example, an associative concept of “piano” could
be subsumed under “musical instrument”, “piece of furniture”, or many other concepts de-
pending on context. But each of these represents an abstraction of content and thus a formal
concept. Associative systems are “bottom-up” because they are trained using examples from
which structures emerge.

Associative concepts can serve as a model of how humans imagine concepts, which are
called “cognitive concepts” is this paper. But other structures, such as emergent structures
in some systems (see below), can also be modeled as associative concepts. There is some
evidence from studies in selective brain damage (Damasio & Damasio, 1994) that some
clustering or hierarchical organization of cognitive concepts does occur in the brain. For
example, there are patients who lose all there knowledge about specific concept groups,
such as vegetables, but retain all other knowledge. But there is no evidence that cognitive
concepts form rigid ISA hierarchies instead of loose associations.

The distinction between formal and associative concepts is similar to but broader than
Sloman’s (1996) rule-based and associative forms of reasoning. Sloman’s research is re-



stricted to human cognition whereas the notion of formal and associative concepts can also
be applied to systems. Furthermore, Sloman does not discuss connections such as emergence
(see below). The distinction is also similar but not identical to Jacob’s (1991) distinction
between classes and categories. Formal and associative concepts are different models of rep-
resentation (a structural distinction) whereas categories and classes tend to have ontological
differences. Formal concepts do not need to be “mutually exclusive” because that would re-
quire a tree hierarchy. In a concept lattice, formal concepts are precisely defined but can be
overlapping. For example, “dog” and “pet” can be precisely defined within a formal context
but they can be overlapping. Whether “pet” is a formal or associative concept depends on
how it is modeled in context. This is in contrast to Jacob’s “categories” and “classes” where
“pet” would usually be a category.

Both formal and associative approaches have advantages and limitations. Many argu-
ments against formal concepts are based on psychological evidence (eg. Rosch (1973)) or
linguistic evidence (eg. Wittgenstein). It is argued (Lakoff & Johnson, 1999) that formal
concepts are insufficient because human cognition is embodied and situated. Further ev-
idence against formal approaches is that classification systems are often unsatisfactory to
users (compare Yahoo! with Google) because classification presupposes precise contexts but
designers and users of a system are not usually in the same context. Associative approaches
can avoid that problem by assuming that context itself is an associative (thus flexible) entity.
In AI, more than 15 years of manual labor invested in the formal ontology2 CYC (2001) have
not yielded a universally useful and acceptable knowledge representation tool - most likely
because the tool is formal and not situated or embodied.

On the other hand, Medin (1989, p.1476) states that “despite the overwhelming evidence
against the classical view, there is something about it that is intuitively compelling”. People
want rigid organization. Patrons do not want to return to a library to discover that all books
have been slightly moved over night because today’s fuzzy representation is slightly different
from yesterday’s. Furthermore, the formal approach is computationally easy to implement
because computers employ formal logic. While associative concepts in the form of neural
networks have been successfully applied to small scale robotic or perceptual tasks such as
face recognition, applications that combine a multitude of robotic, perceptual and cognitive
tasks are not yet in sight. Even though CYC and similar formal ontologies are not perfect,
they are frequently used in language processing and comprehension applications (such as on
the WWW) because there is no equivalent tool based on associative concepts available.

So, if both formal and associative approaches have limitations but also show promise, it
seems reasonable to consider combining both into a “multi-level approach”. This is not a just
a two-level approach because further levels, such as a linguistic level or a physical level, might
need to be added (see below). Human reasoning does in fact appear to encompass several of
these levels (Sloman, 1996) because humans are both capable of processing in an association-
based mode and employing logical reasoning. Several cognitive scientists (Sloman (1996),
Pinker (1991), and to some degree Clark (1997)) have recently been supporting models that
are based on such a combination.

With respect to classification systems and formal ontologies this implies that it is time

2It should be noted that the term “ontology” in this paper is used in its AI or WWW meaning as defined,
for example, by www.ontology.org and not in its original sense as used in philosophy.



to integrate the situated, embodied, contextual and perception-based nature of information
into these systems. Of course, this requires some formal methods or models that describe
how this integration could be achieved. The current dilemma of classification theory is that
all existing classification schemes are based on formal concepts but the theoretical research
in this area (eg. Jacob (1991) and Olson (1999)) emphasizes a criticism of the formal
approach. There has been at least one implementation of a system (Ruiz & Srinivasan,
1999) that represents the nodes of a thesaurus (i.e. a formal structure) as neural networks
(i.e. associative concepts). But this is not the only system that is conceivable.

This paper argues that if formal knowledge systems, such as classification schemes and
formal ontologies, are ever to overcome their current shortcomings, they need to incorpo-
rate associative concepts. To achieve that they need to employ emergent structures (Clark
(1997) and see below) and dynamic interactions (see below). This may not be an easy task.
Essentially the problem of integration is equivalent to the gap between quantum mechanics
(an associative system) and classical mechanics (a formal system), which has been studied
since Einstein and is still unsolved. But there may be partial solutions, such as Ruiz & Srini-
vasan’s system, that can prove successful and hopefully superior to contemporary, inflexible
classificatory structures.

2 Features of formal and associative approaches

The features in table 1 are prototypical for formal and associative approaches. That means
that not all approaches or systems necessarily have all the above mentioned features. Instead
the features indicate a tendency because systems have a tendency to have either formal
or associative features; a degree because the features can be gradual or overlapping; or a
viewpoint because a single system can be analyzed from a formal or associative viewpoint.
In the following sections, emergent structures, concept formation and definition, reasoning
mechanisms and the use of symbolic representations are investigated in more detail. They
describe important features of formal and associative approaches and reasons why they are
so different.

2.1 Emergent and designed structures

The search engine Google is an example of the effective use of emergent structures. Clark
(1997, p. 110) defines emergence by stating that “a phenomenon is emergent if it is best
understood by attention to the changing values of a collective variable” and “emergent
phenomena ... are thus the products of collective activity rather than of single components
or dedicated control systems”. Emergent structures require some complex structure from
which they can emerge in a manner that cannot be explained by a single variable. They are
beyond direct control and thus in contrast to designed structures.

Yahoo!’s hierarchy is entirely manually designed and has no room for emergent structures
at all. Search engines, such as Lycos, Altavista and Google, use emergent structures because
the outcome of a search is not explicitly stored in a database but instead generated at
the time of the search based on the parameters of the search. But there is a fundamental
difference between traditional search engines, such as Lycos and Altavista, and Google.



Traditional search engines are designed based on Salton’s vector space model of information
retrieval with some additional models of natural language processing, parsing, ranking and
so on. The human involvement in creating these systems is significantly smaller than in
Yahoo! but the assumptions that are implicitly contained in the model are quite complex.
The emergent structures in these systems depend on occurrence of terms in documents
and on the dynamics of natural language because they are highly affected by the polysemy
and synonymy of natural language expressions. Experienced users can successfully find
information if they are aware of language dynamics and formulate their queries accordingly
(by using “and” and “or” to account for polysemy and synonymy, respectively).

In comparison to traditional search engines, Google uses a different framework for emer-
gent structures. Its primary retrieval and ranking algorithm is not based on Salton’s vector
space model but instead directly exploits the WWW’s network character, which is repre-
sented by which and how many pages link to a page and by the context generated by the
anchor text of links. Thus although Google employs some algorithms for parsing and other
natural language processing techniques, it is not the dynamics of term occurrence and nat-
ural language that is primarily responsible for the emergent structures but instead it is the
dynamics of the WWW linkage structure itself that is responsible.

This does not imply that in general WWW dynamics are more effective than term oc-
currence or natural language dynamics. The success of a structure is context- and purpose-
dependent. According to Clark (1997), it is difficult to explain why structures emerge and
predict which structures emerge and thus even more difficult or impossible to engineer emer-
gent structures. In this case in the comparison between traditional engines and Google, the
effectiveness of Google’s structures corresponds inversely to the complexity of the underlying
model. That means that the system (Google) that uses an underlying model that is simpler
(because a network is a mathematically simpler structure than a vector space) is also more
effective. Again it is not known whether that is a general rule or just a coincidence.

Emergent structures are a characteristic of associative approaches because formal ap-
proaches contain rigid relations whereas the relations among associative concepts are asso-
ciative and thus open to flexibility and discovery. While Yahoo! is a manually designed
classification system, the WWW linkage structure that underlies Google is flexible, dynamic
and unpredictable. At the same time the WWW linkage structure is not directly accessible
to human analysis. There have been approaches to visualize the WWW linkage structure
(compare www.cybergeography.org) but such maps represent associative structures and con-
cepts, not formal concepts or classification structures. In a sense, Google presents successful
results but it is difficult to explain exactly why that is the case. Again according to Clark
that is typical for emergent structures.

To create a more transparent environment for users, a formal system could be added on
top of the emergent structures. Search engines, such as Northernlight, appear to do that to
some extent by providing an automatically generated folder hierarchy. To summarize, in the
case of search engines it has proven successful to start with an associative approach (WWW
structures) instead of a formal approach (Yahoo!’s classification scheme) but that does not
mean that users would not like to see a formal perspective (in the form of an emerging classi-
ficationary structure) on top of the emergent structures. Formal and associative approaches
are thus not exclusive but instead may be combined with each other in a multilevel approach.



2.2 Concept formation and definitions

Many animals clearly distinguish between male and female members of their species, be-
tween members and non-members of their species, between food and non-food and so forth.
No matter in what manner animals actually mentally perceive this information, these are
examples that can be modeled as associative or cognitive concepts. Clark (1997) empha-
sizes that there is no clear distinction between cognition and the external world. He states
(p. 69) that “brain and world collaborate in ways that are richer and more clearly driven
by computational and informational needs than was previously suspected.” The following
example illustrates that. The squirrels at my home have learned to beg for food by jumping
onto the window sill to get my attention and then running to the door to accept walnuts.
But it is very difficult to feed them anywhere else in the garden. This can be modeled as
an associative concept of me as a food donor. But the concept includes the environment
where the activity is happening and ritualized behavior by the squirrels that initiates the
feeding activity. Associative concepts can thus be complex entities based on activities and
associations.

Formal concepts on the other hand are more abstract and precisely defined. They are
still dependent on context but the context itself can be formally described. For example,
whether a tomato is a fruit or vegetable depends on whether the formal context is biology
or cooking. In a cooking context, vegetables can be formally defined as elements of the main
course. The tomato is thus a vegetable. In biology fruits are defined as containing seeds.
The tomato is thus a fruit. As mentioned before, mutual exclusivity is not required as long
as the definitions are precise but allow for overlap. This could, for example, be achieved by
using a faceted classification (Priss & Jacob, 1999).

Formal definitions give rise to formal concepts with clearly defined extensions, i.e. sets
of objects which they denote, and clearly defined intensions, i.e. the formal properties that
are contained in the definitions. Formal concepts form an ISA hierarchy based on the rule
that the extensions of subconcepts are contained in the extensions of superconcepts and the
intensions of superconcepts are contained in the intensions of subconcepts. This hierarchy
can be a tree-hierarchy or a concept lattice (compare Ganter & Wille (1999a) or Priss &
Jacob (1999)).

Formal systems can be inconsistent, if there are contradictory definitions for items, and
incomplete, if relevant information about the classification of elements is missing. But if a
formal system is neither inconsistent nor incomplete, which can be achieved for fixed, limited
contexts within specific domains, then the concepts are neither fuzzy nor prototypical as
associative concepts are. This is because a formal system is an abstraction and corresponds
only more or less well to associative or cognitive concepts. In some domains, such as the
sciences, there exist large systems of formally defined concepts which function reasonably well
for their purposes. Rosch’s and Wittgenstein’s criticism of the classical theory of concepts
does thus not show that formal concepts are incorrect but instead it shows that they are
entirely different from associative concepts.

Humans can think of “flying” as a prototypical activity of birds even though not all birds
fly. If asked to define “bird”, humans (at least in some cultures) produce a precise definition
which is appropriate to their current context and which could be “birds are flying animals”. If



then prompted about a contradiction, such as “but not all birds fly”, there are two choices:
it could either be concluded that concepts are fuzzy and cannot be formally defined or
the definition can be adjusted. In many cases the second choice prevails. That means
even though Wittgenstein-Rosch followers are correct in stating that cognitive concepts are
fuzzy, when prompted humans may abstract their cognitive concepts into formal concepts.
This process is so seamless that humans may not even be aware of the difference between
cognitive concepts and formal concepts as represented in formal definitions. This is an
acquired and culturally-influenced preference because linguistic investigations (Iris et al,
1988) demonstrate that there are cultural differences in the degree of formality of concepts.
Their study shows that the use of formal definitions is more prevalent in cultures with written
languages compared to cultures without a tradition of writing.

The conclusion of this section is that both associative and formal concepts play a part in
human rationality and humans can shift between both seamlessly and unconsciously. The
differences between both types of concepts can be gradual. The shift from associative to
formal concepts is a form of abstraction because the intension of a concept is specified (eg.
“tomato ISA fruit”). A shift from a formal to an associative concept can occur, for example,
if a word that denotes a formal concept in some context is uttered and invokes an associative
concept in the mind of a listener. Any formal system can give rise to emergent structures (i.e.
associative concepts) if the system is too complex and dynamic to be completely understood
in terms of a fixed set of variables. Thus shifting the viewpoint on a system from formal to
associative can provide new insights. This is further elaborated in the section on dynamic
interactions below.

2.3 Reasoning mechanisms and contexts

Goldstone & Kersten (in press) state that “an extremely wide variety of cognitive acts can be
understood as categorizations”. The formal equivalent to this statement is that formal logic
can be understood as an elaboration of formal concepts. This is because the logical assertion
that “a implies b” can be formulated as “there is a formal concept which has property a and
which is a subconcept of a formal concept which has property b”. Ganter & Wille (1999b)
provide the mathematical details that show that any logical clause can be represented as
implication among attributes in a formal concept lattices. The “cognitive acts” related to
formal concepts are thus classification, logical inference and causality. Associative concepts
do not support these types of reasoning, which is why formal logic may fail if applied to
them. Instead the main cognitive acts related to associative concepts are associations based
on similarity, dissimilarity, co-occurrence and so on.

The two levels of formal and associative approaches are often complementary. Human
cognitive acts are usually neither solely associative nor formal but instead a combination of
both. The research by Chierchia et al. (1998) presents an example that supports this idea.
They investigate the use of logical AND, OR, and NOT. A commonly held belief is that
humans do not use these operators in the sense of formal logic. For example, if someone is
asked whether they want tea or coffee then “both” is an unacceptable answer even though
logical OR would allow this. Chierchia et al. point out, however, that in hypothetical and
future-related contexts humans do use logical OR in the formal logical sense. For example,



if someone bets $10 that it will rain or snow tomorrow, this person will want to have the
money even if it both rains and snows. There are thus some cases in which humans use the
logical operators in their formal logical sense. Whereas in other situations the operators are
overwritten by pragmatic rules that depend on the associations of the context. “Both” is an
unacceptable answer for present tense OR-questions not because it is perceived to be illogical
but because its association is pragmatically unacceptable in these situations. Humans easily
shift between the different uses of logical operators in natural language. They only encounter
problems if the operators are to be used in a strict formal sense in the context of search
engines or programming languages which is in contrast to conventional associations.

To facilitate the integration of such multilevel approaches, clear representations of “con-
text” are required because both associative and formal concepts are context-dependent. But
the types of contexts are different. Formal contexts are abstract. Anything formulated with
respect to a formal context is valid globally in the whole context if the formal system is
consistent. Associative concepts are more detailed and “holistic” in that they contain many
possible associations of a concept. But these associations are not globally valid. On an asso-
ciative level (or in common sense arguments), contradictions can occur as long as they relate
to concepts in different associative contexts. It may be acceptable to state that “birds fly”
with respect to a local, associative context but not with respect to a global, formal context
of biology. There has been a substantial amount of research in AI concerning contexts and
shifting among contexts (compare Benerecetti et al. (2000) for an overview). Examples of
specific theories are CYC’s micro-theories and dimensions (CYC, 2001) and Devlin (1991)
and other’s situation theory. But these theories are too focused on the formal side and
mostly ignore associative concepts and contexts.

Devices that support human cognitive processes, such as search engines, classification
systems or programming languages, could be improved if they paid more attention to the
differences between associative and formal concepts. These systems should have some flex-
ibility to shift among representations. Both associative approaches and formal approaches,
such as formal logic and other well-defined mathematical structures, should be employed by
such systems.

2.4 Symbolic and other levels of representation

Another difference between formal and associative approaches is their use of symbolic rep-
resentations. Examples of symbolic representations are natural or artificial languages or
symbol systems. Presumably a significant difference between humans and other animals
is the human use of symbolic representations. Experiments have shown that some animals,
such as gorillas, are capable of learning more than 1000 signs of the American Sign Language
(PBS, 2001). But that is only a fraction of the number of symbols that humans can acquire.
Thus animal cognition cannot be primarily symbolic in the manner of human language-based
cognition.

Both associative and formal concepts can be symbolically represented. Symbolic repre-
sentations can thus be more or less formal. They can be quite informal, such as ambiguous
words with multiple meanings, medium formal, such as disambiguated words in a specific
context, and highly formal, such as scientific terminology which is consistently defined for



use in multiple contexts.
A system of symbols, such as a natural language, essentially represents another level

of representation in addition to associative and formal concepts. There are multiple and
complex interactions between the different levels. Linguistic phenomena, such as polysemy,
synonymy and lexical gaps (i.e. concepts that have a symbolic representation in one language
but not in another) indicate that there is no simple one-to-one correspondence between
linguistic units and concepts.

A fourth level to be considered is the external world. Independently of whether or in
what format an external world may exist, it should be obvious that this level matters. But
as Clark (1997) states, humans do not have a complete world model in their minds. That
implies that there also cannot be a complete world model represented in language. The model
that humans store in their minds is so incomplete that according to Clark it is possible to
add, alter or remove objects in a person’s visual environment without the person noticing it.
The explanation is that the partial model that humans have in their minds is continuously
updated by perceptual input. It could be argued that since human cognition involves both
the external world and internal representations but language represents, in this case, only
internal representations, language cannot adequately represent human cognition.

This poses a challenge for formal knowledge representation systems and formal ontologies,
such as CYC. Since these systems store symbolic information, it follows that they can only
represent a small proportion of the knowledge in question. CYC explicitly stores information
such as “you can see a person’s nose but not normally a person’s heart” or “a normal face
has two eyes and a nose”. Humans do not need to permanently store such information if it
can be deduced from other knowledge and the external world. In the face-example humans
can look at a person present or evoke a mental image of a person.

It is important to note that although words can evoke cognitive or formal concepts in
a human mind or represent such concepts in a specific context, in general, words are not
equivalent to concepts. Wittgenstein’s famous “game” example shows that the word “game”
without contextual information is ambiguous. It denotes a fuzzy notion of “game-like”. If
“game” is uttered in a context, it is mapped to whatever fits best to being “game-like”.
This also explains metaphoric and creative word use, such as in “game of life”. Since all
words in a sentence have this incomplete indicative character, ambiguity is only resolved by
a combination of words within a context. If the combination of words is sufficiently dense,
some of the words become redundant. This redundancy ensures that understanding is even
possible if some words are missed because of noise or unfamiliarity with them. For example,
in “the XXX of chess”, it might easily be guessed that XXX can mean game. Associative or
formal concepts are thus not directly represented by individual words or phrases but instead
they are associated with them in context. Symbol perception causes cognitive concepts to
emerge in the human mind.

Disambiguated symbolic representations are usually more associated with formal concepts
than with associative concepts because they are abstract and content-reduced. For example,
in “she looked through the window” and “she painted the window”, the word “window”
refers in one case to the glass, in the other one to the frame. An associative concept of
window can have both associations. But a formal concept of “window” would most likely
either be in ISA relation to “transparent object” or to “intransparent object” but not to



both. Out of context, the word “window” can point to an associative concept, but in the
contexts of the two sentences it points to two different formal concepts. Because humans
know that one cannot look through paint, it is clear to which formal concept of “window”, the
word refers in each sentence. But for a formal ontology or for a natural language processing
algorithm employed by a search engine, it is difficult to disambiguate the two different senses
of “window” because the system would need to have access to knowledge about the external
world.

As a solution, an ontology could store as much world knowledge in symbolic form as
possible. CYC does that. But even though more than 15 years of manual labor have been
invested into CYC so far, its representation of external world knowledge is still not suffi-
ciently complete. And because of the abstract nature of symbolic representations, it probably
never will be. A multilevel approach for ontologies would be to combine the symbolic rep-
resentation of knowledge that can be symbolically represented, such as “2+2 = 4”, with a
more associative, schematic representation of knowledge that cannot easily be symbolically
represented. An ideal version of such an ontology would have a robotic/perceptive interface
that could directly interact with the physical world. But that is quite futuristic. A simpler
version would represent non-symbolic knowledge in 2- or 3-dimensional schematic simula-
tions, which would be mapped to associative concepts using gestalt principles of perception.
Given the modern achievements of robotics and research in gestalt perception, such a system
is not quite so futuristic.

3 Dynamic interactions between associative and for-

mal levels

As mentioned before, the distinction between formal and associative systems is based on
a tendency of systems to have features of either one. But the distinction also depends on
point of view. For example, natural language can be viewed as an associative system in
that language use evokes cognitive concepts in the language user’s mind. But language can
also be viewed as a formal system in that dictionaries provide definitions for individual word
senses that point to formal concepts.

As another example, formal logic itself is obviously a formal system but it also gives rise
to emergent structures (or meta-level expressions) that cannot be explained within the orig-
inal system. Steels (1994) supports this view by stating that emergent phenomena require
description in a new vocabulary. Therefore associative concepts can even emerge from a
formal system such as formal logic. Gödel’s work also provides evidence for this. He proved
that sophisticated mathematical structures, such as formal logic, are as a whole either in-
consistent or incomplete. That means they cannot be entirely explained and thus have an
associative character and give rise to emergent structures. Kuhn’s (1962) paradigms may
have the same function: each paradigm starts as a formal system. But viewed from an
associative perspective some facts remain unexplained. A new paradigm needs to be formed
to explain the emergent structures from a prior paradigm.

An analogy for the shift or rise from an associative level to a formal level is a computer
game where players start at level 1 in an open structure and work their way up to a more



complete structure. Once that is accomplished, level 2 is reached, which sets the players back
to an open structure but on a more challenging level. A shift can start a snowball effect or
positive feedback loop. For example, Clark (1997, p. 62) speculates that in the evolutionary
development of humans “it may be that a small series of neuro-cognitive differences make
possible the origination and exploitation of simple linguistic and cultural tools. From that
point on, a kind of snowball effect (a positive feedback loop) may take over. ... It is as if
our bootstraps themselves grew in length as a result of our pulling on them”. Devlin (2000)
speculates on a similar effect of a sudden increase of conceptual development in human
evolution which coincides with a sudden increase in human brain matter.

Clark also calls this a “mangrove effect” in analogy to the way mangroves create islands
by accumulating debris amongst their roots which in turn provides a substrate for the devel-
opment of new mangroves. Some mental tasks such as writing poetry or planning activities
are best tackled by alternating between a representation in the form of associative concepts,
such as brainstorming or imagining, and a formal representation, which can even be exter-
nal, such as writing or sketching the ideas on a piece of paper. Similar examples of the
mangrove effect are the use of diagrams as associative devices in explaining mathematical
facts or proofs, even though formal logic should be logically sufficient for explanations; or
maps used for navigation, even though algorithmic descriptions, such as “turn right at the
next corner”, should be sufficient.

With respect to formal ontologies these feedback loops or mangrove effects have two
consequences: first, formal ontologies need to provide methods for multilevel representa-
tional approaches, and for shifting among them, if the ontologies are expected to reach the
complexity of human cognition, emergent structures and the external world. Second, the
existence of feedback loops gives rise to the hope that perhaps all that is required to boost
formal ontologies is to understand how to integrate formal and associative representations
and how to initiate shifting. Once that is achieved the feedback loop between both forms of
representation may take off and grow exponentially by itself. But, of course, reaching such
an understanding may not be easy. Several disciplines provide hints for solutions: cogni-
tive psychology because it studies how cognitive concepts are formed; several areas in AI
and Artificial Life that study self-organizing emergent behavior; Dynamical Systems Theory
(compare Clark (1997)); and last but not least Data Mining because it identifies associative
concepts in large sets of “raw” data.

4 Conclusion

Several disciplines favor either formal or associative systems and approaches. This paper
argues that both approaches need to be combined in the design of formal ontologies. This
claim is supported by the fact that the human mind combines both types of representations.
Such a combination often initiates a positive feedback loop because the expressiveness of
representations increases exponentially. Examples for this kind of growth of expressibility are
Kuhn’s (1962) paradigm shifts and Clark’s (1997) mangrove effects. A conclusion is that once
ontology researchers succeed in incorporating associative structures into traditional formal
ontologies, the representational capabilities of ontologies may grow exponentially. This task
is not easy but systems that implement partial solutions (such as Ruiz & Srinivasan (1999))



already exist and several disciplines, such as psychology, AI, and Data Mining can contribute
to solutions.
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