
A semiotic-conceptual framework for

ontologies

OntoQuery - Lecture 4

Uta Priss

School of Computing,

Napier University,

Edinburgh, UK

u.priss@napier.ac.uk

May, 2004



I) Strings versus Signs

II) Peirce’s Sign Triad

III) A Semiotic Conceptual Framework

1



Variables in maths/logic:

x2 + x + 15 = y

x = 2

y = 21

true or false?

use rules for axioms, syntax, grammar

2



Variables in computer programs:

1> age := 5

2> counter := 5

3> age := age + 1

4> age := ‘‘Golden Age’’

equal or identical?

Line 1 and 2: equal values

Line 1 and 3: identical variables

Line 3 and 4: homographic variables

3



Strings versus Signs:

maths/logic programming languages

variables are strings variables are signs
independent of time and user depend on history and user
single global context many different contexts
equality = identity equality 6= identity
set-based array-, list-, table-based
binary triadic

4



Database theory: Relational Algebra (SQL)

Contextual factors in databases:

? recovery mechanisms

? transaction logs

? deadlocks

? performance tuning

? user support

? versions

? “error” and “exception” handling

? networking and external devices

→ distractions from elegant, deterministic formal structure?

5



PEIRCE:

object

representamen

interpretant

SIGN

“A sign, or representamen, is something which stands to some-

body for something in some respect or capacity. It addresses

somebody, that is, creates in the mind of that person an equiva-

lent sign, or perhaps a more developed sign. That sign which it

creates I call the interpretant of the first sign. The sign stands

for something, its object.” Peirce (1897)

6



Variables in programming languages are triadic:

• representamen: variable name

• denotation: a type/value pair

• interpretant: operating system, language, programmer, ...

7



Maths/logic is binary:

- names are irrelevant (renaming does not affect content)

- content is irrelevant (formal language + grammar, proof the-

ory)

8



A Semiotic Conceptual Framework:

as sign

SIGN

denotation interpretant

contextformal concept

representation

sign

mathematical entity representamen

representamen

9



Computational entities versus signs:

Computational entities (strings) are fully defined by axioms, rules,

grammars, etc.

Signs are triadic and exist in real world interpretants.

10



Each of the three components of a sign can be modelled as a

computational entity.

A theory which describes the combination of the three compo-

nents of a sign ...

11



Interpretants are called overlapping iff they share signs.

→ Example: Uta (name), uta (Japanese for “song”)

these interpretants do not overlap

12



Synonymy is an equivalence relation among signs which fulfills

the necessary (but not sufficient) condition that synonymous

signs have synonymous denotations.

→ Synonymy cannot be calculated but depends on user judge-

ment.

Example: hot - warm - medium - cool - cold - freezing

13



Interpretants are called compatible iff signs with equal repre-

sentamens are synonymous.

not compatible: possibly compatible:
age := 5 age := 5
age := “Golden Age” age := 6

→ compatibility is a basic condition for communication

14



Sign equivalences in compatible interpretants:

• Signs are polysemous iff they have equal representamens.

• Signs are equal iff they have equal representamens and equal
denotations.

• Signs can be equinymous if they are synonymous and have
equal denotations (i.e. “strong synonymy”).

• Signs are identical iff they have identical denotations ac-
cording to some mapping called identity which maps signs
onto identifiers.

15



Example:

Paul’s salary = 20K salary 1 = 20K
PAUL’s salary = 20K equal equinymous
Paul’s salary = 25K polysemous synonymous

16



Signs are anonymous iff their representamens do not add any

information which is not already contained in the denotations.

→ Constants in programming languages are anonymous. They

have no representamens apart from their own denotations.

Compatible interpretants are mergeable iff all their synonyms

are equinyms.

→ For anonymous signs in mergeable interpretants, all five sign

equivalence relations are the same.

17



The difference between signs and computational entities can now

be explained as follows:

Computational entities are anonymous and their meaning does

not depend on special contexts.

→ Signs have richer equivalence relations than computational

entities. The past and present of signs can possibly be precisely

modelled using computational entities, but not the future.

18



Sign processing implies information management tasks:

• representamen: manage names, namespaces, lexica

• denotation: manage identities and type hierarchies

• interpretants: manage contexts

19



Example:

break

if number == 5:

print "good guess"

while counter <= 5:

number = input("please guess the number")

counter = 1

print "game starts"

else: 

print "try again"

counter = counter +1

else:

print "game over"

20



counter <= 5

game starts try again good guess game over

please guess

counter = 1 number != 5 number = 5 counter > 5

21



What next?

Conceptual structures (logic, reasoning etc) are already well
understood and form the foundation of a semiotic conceptual
framework.

What impact do the sign equivalences have on conceptual struc-
tures?

→ analyse the process of programming from a semiotic perspec-
tive

What is the role of the semiotic modes (assertion, question,
query)?

→ analyse the role of modes in different programming paradigms

22


