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Variables in maths/logic:

x2 + x + 15 = y

x = 2

y = 21

true or false?

use rules for axioms, syntax, grammar
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Variables in computer programs:

1> age := 5

2> counter := 5

3> age := age + 1

4> age := ‘‘Golden Age’’

equal or identical?

Line 1 and 2: equal values

Line 1 and 3: identical variables

Line 3 and 4: homographic variables
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Strings versus Signs:

maths/logic programming languages

variables are strings variables are signs
independent of time and user depend on history and user
single global context many different contexts
equality = identity equality 6= identity
set-based array-, list-, table-based
binary triadic
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Database theory: Relational Algebra (SQL)

Contextual factors in databases:

? recovery mechanisms

? transaction logs

? deadlocks

? performance tuning

? user support

? versions

? “error” and “exception” handling

? networking and external devices

→ distractions from elegant, deterministic formal structure?
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PEIRCE:

object

representamen

interpretant

SIGN

“A sign, or representamen, is something which stands to some-

body for something in some respect or capacity. It addresses

somebody, that is, creates in the mind of that person an equiva-

lent sign, or perhaps a more developed sign. That sign which it

creates I call the interpretant of the first sign. The sign stands

for something, its object.” Peirce (1897)
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Variables in programming languages are triadic:

• representamen: variable name

• denotation: a type/value pair

• interpretant: operating system, language, programmer, ...
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Maths/logic is binary:

- names are irrelevant (renaming does not affect content)

- content is irrelevant (formal language + grammar, proof the-

ory)
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A Semiotic Conceptual Framework:

as sign

SIGN

denotation interpretant

contextformal concept

representation

sign

mathematical entity representamen

representamen
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Computational entities versus signs:

Computational entities (strings) are fully defined by axioms, rules,

grammars, etc.

Signs are triadic and exist in real world interpretants.
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Each of the three components of a sign can be modelled as a

computational entity.

A theory which describes the combination of the three compo-

nents of a sign ...
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Interpretants are called overlapping iff they share signs.

→ Example: Uta (name), uta (Japanese for “song”)

these interpretants do not overlap
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Synonymy is an equivalence relation among signs which fulfills

the necessary (but not sufficient) condition that synonymous

signs have synonymous denotations.

→ Synonymy cannot be calculated but depends on user judge-

ment.

Example: hot - warm - medium - cool - cold - freezing
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Interpretants are called compatible iff signs with equal repre-

sentamens are synonymous.

not compatible: possibly compatible:
age := 5 age := 5
age := “Golden Age” age := 6

→ compatibility is a basic condition for communication
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Sign equivalences in compatible interpretants:

• Signs are polysemous iff they have equal representamens.

• Signs are equal iff they have equal representamens and equal
denotations.

• Signs can be equinymous if they are synonymous and have
equal denotations (i.e. “strong synonymy”).

• Signs are identical iff they have identical denotations ac-
cording to some mapping called identity which maps signs
onto identifiers.
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Example:

Paul’s salary = 20K salary 1 = 20K
PAUL’s salary = 20K equal equinymous
Paul’s salary = 25K polysemous synonymous
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Signs are anonymous iff their representamens do not add any

information which is not already contained in the denotations.

→ Constants in programming languages are anonymous. They

have no representamens apart from their own denotations.

Compatible interpretants are mergeable iff all their synonyms

are equinyms.

→ For anonymous signs in mergeable interpretants, all five sign

equivalence relations are the same.
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The difference between signs and computational entities can now

be explained as follows:

Computational entities are anonymous and their meaning does

not depend on special contexts.

→ Signs have richer equivalence relations than computational

entities. The past and present of signs can possibly be precisely

modelled using computational entities, but not the future.
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Sign processing implies information management tasks:

• representamen: manage names, namespaces, lexica

• denotation: manage identities and type hierarchies

• interpretants: manage contexts
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Example:

break

if number == 5:

print "good guess"

while counter <= 5:

number = input("please guess the number")

counter = 1

print "game starts"

else: 

print "try again"

counter = counter +1

else:

print "game over"
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counter <= 5

game starts try again good guess game over

please guess

counter = 1 number != 5 number = 5 counter > 5
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What next?

Conceptual structures (logic, reasoning etc) are already well
understood and form the foundation of a semiotic conceptual
framework.

What impact do the sign equivalences have on conceptual struc-
tures?

→ analyse the process of programming from a semiotic perspec-
tive

What is the role of the semiotic modes (assertion, question,
query)?

→ analyse the role of modes in different programming paradigms
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