The Semantic Web	RDF and OWL	Ontologies
0000	0000	000

The Semantic Web

Web Programming

Uta Priss ZELL, Ostfalia University

2013

The Semantic Web	RDF and OWL	Ontologies
0000	0000	000

Outline

The Semantic Web

RDF and OWL

Ontologies

The Semantic Web

The Semantic Web was suggested by Tim Berners-Lee (et al.) in 2001 as a means for representing and using semantics on the WWW.

Quotes from his paper:

(The emphasised keywords indicate terms whose semantics, or meaning, were defined for the agent through the Semantic Web.)

The Semantic Web	RDF and OWL	Ontologies
0000	0000	000
Dawa and Las 2001		

Berners-Lee, 2001

"Lucy, was on the line from the doctor's office: 'Mom needs to see a specialist and then has to have a series of physical therapy sessions. Biweekly or something. I'm going to have my agent set up the appointments.'

Lucy instructed her Semantic Web agent through her handheld Web browser. The agent promptly retrieved information about Mom's *prescribed treatment* from the doctor's agent, looked up several lists of *providers*, and checked for the ones *in-plan* for Mom's insurance within a 20-mile radius of her home and with a rating of excellent or very good on trusted rating services."

The Semantic Web	RDF and OWL	Ontologies
0000	0000	000

Traditional research in this area (since 1950s)

- Artificial Intelligence
- Knowledge Representation and Reasoning
- Expert Systems
- ► Natural Language Processing
- Conceptual Structures

The Semantic Web	RDF and OWL	Ontologies
0000	0000	000

Applications that are currently feasible

- ► Scheduling, "calendaring"
- ► trip planning
- ► shopbots, auction bots
- bio-informatics

The Semantic Web	RDF and OWL	Ontologies
0000	●000	000

How is semantics encoded?

RDF: Resource Description Framework here using Dublin Core (DC)

```
<rdf:RDF
xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
xmlns:dc='http://purl.org/dc/elements/1.1/'>
<rdf:Description rdf:about='http://servername/something'>
```

```
<dc:creator>John Doe</dc:creator>
<dc:title>This is my book</dc:title>
<dc:date>2000</dc:date>
</rdf:Description>
</rdf:RDF>
```

The Semantic Web	RDF and OWL	Ontologies
0000	0000	000

RDF uses triples:

A resource has a property which points to another resource.

<rdf:Description rdf:about='http://servername/something'> <dc:creator>John Doe</dc:creator>

Resource: http://servername/something Property: <dc:creator> Resource: John Doe

OWL: Web Ontology Language

 OWL provides reasoning mechanisms. It can be automatically determined whether \ldots

- ► an instance is a member of a class
- several classes have common members
- a class is more general than another class
- ► an instance has a certain property
- whether a set of definitions is consistent

OWL Example

<rdfs:Class rdf:ID="Airport"> <rdfs:subClassOf> <owl:Restriction> <owl:onProperty rdf:resource="#name"/> <owl:allValuesFrom rdf:resource="...#string"/> </owl:Restriction> </rdfs:subClassOf> <owl:DatatypeProperty rdf:ID="name"/>

The Semantic Web	RDF and OWL	Ontologies
0000	0000	● 00

What is an ontology

- ► classes (or concepts)
- relations (a subset of classes)
- ► slots (features, attributes, roles or properties)
- ► values with restrictions (facets), cardinality, type, scope
- instances (individuals, objects or entities)
- \rightarrow similar to object-oriented modelling, relational databases

Why develop ontologies?

- Share common understanding of information among people or agents
- Reuse of domain knowledge
- Make domain assumptions explicit
- ► Separate domain knowledge from operational knowledge
- Analyse domain knowledge

The Semantic Web	RDF and OWL	Ontologies
0000	0000	000

Example: An ontology for dogs

- ► classes: dog, poodle, terrier, ...
- ▶ slots: fur colour, size, ...
- ▶ value restrictions: size is between 30 cm and 1 m, ...
- instances: Snoopy, Dogmatix (Idefix)